Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(30): 42750-42765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877194

RESUMEN

This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Ríos , Brasil , Ríos/química , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Estaciones del Año
2.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986204

RESUMEN

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

3.
Sci Total Environ ; 897: 165401, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451469

RESUMEN

The widespread presence of marine microplastics (< 5 mm) is a significant concern, as it may harm marine biodiversity and ocean ecosystems. Corals' capacity to ingest microplastics has emerged as a significant threat to reef ecosystems, owing to the detrimental physiological and ecological effects it can trigger. The extent of the impact of microplastics on Brazilian corals remains unclear and this study aimed to investigate its distribution and characteristics in four coral species: Favia gravida, Mussismilia hispida, Montastrea cavernosa, and Siderastrea stellata, found in the Trindade and Martim Vaz Islands - the most isolated archipelago of Brazil, located about 1200 km (680 miles) east of the coast. This study aims to reveal the extent of microplastic distribution in the coral reef environment, assess the amount of microplastics in different coral species, and compare each species' capacity to adhere and accumulate microplastics. A high concentration of ingested and adhered microplastics was detected in all coral species evaluated in the present study. No significant differences were observed in the sampling points which indicates that although the sampling points are located at different distances from the coast, the microplastic pollution is equally distributed in the region. Polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), poly(methyl methacrylate) (PMMA), Rayon, and Nylon particles were detected, with a predominance of PE (45.5 %). No significant differences in microplastic concentration were detected among the various species and locations studied. Our research presents findings that demonstrate the extensive occurrence of microplastic contamination in coral colonies located on remote islands.


Asunto(s)
Antozoos , Contaminantes Químicos del Agua , Animales , Arrecifes de Coral , Microplásticos , Plásticos , Ecosistema , Antozoos/fisiología , Islas del Atlántico , Polietileno , Contaminantes Químicos del Agua/análisis
4.
Aquat Toxicol ; 258: 106516, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004465

RESUMEN

Microplastics are widespread pollutants in the environment and are considered a global pollution problem. Microplastics mostly originate from larger plastics and due to environmental conditions are undergoing constant fragmentation processes. It is important to understand the fragmentation pathways, since they play a key role in the fate of the particles, and also directly influence toxicity. Amphipods are potential inducers of plastic debris fragmentation. Here, Hyalella azteca was exposed to different concentrations (540, 2700, 5400 items/L) of 24.5 µm polystyrene microplastics (PS-MP) for 7 days. After exposure, oxidative stress, particle size reduction, and mortality were checked. No significant mortality was seen in any of the treatments, although changes were recorded in all enzymatic biomarkers analyzed. It was observed that throughout the ingestion and egestion of PS-MP by H. azteca, particles underwent intense fragmentation, presenting a final size up to 25.3% smaller than the initial size. The fragmentation over time (24, 72, 120, 168 h) was verified and the results showed a constant reduction in average particle size indicating that H. azteca are able to induce PS-MP fragmentation. This process may facilitate bioaccumulation and trophic particle transfer.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Microplásticos/metabolismo , Plásticos/toxicidad , Anfípodos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/metabolismo
5.
Environ Monit Assess ; 195(3): 434, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856928

RESUMEN

The present study analyzed the presence of microplastics (MPs) in the shrimp Macrobrachium amazonicum, which is an economically important food that is consumed in several regions of the Brazilian Amazon. A total of 600 specimens of M. amazonicum were captured at two sampling sites (urban and rural area). A total of 2597 MP particles were recorded in the shrimps, with a significant difference between the two sites. The presence of MPs in the body parts also differed significantly. No significant difference was found between MPs abundance and sex of the shrimps. The size of the MPs did not differ significantly between the collection sites and between the body parts. Dark blue fiber-type MPs were the most abundant. A positive correlation was observed between the abundance of MPs and the total weight of shrimps. Raman spectroscopy identified the dark blue fibers as polypropylene and the FTIR technique identified the light blue fragments as nylon. The results indicate that the presence of MPs in the M. amazonicum shrimp is associated with the capture sites near the urban area and is present in the diet of the Amazonian population that regularly consumes this crustacean in traditional dishes.


Asunto(s)
Palaemonidae , Animales , Brasil , Plásticos , Microplásticos , Monitoreo del Ambiente , Alimentos Marinos , Agua Dulce
6.
Ecotoxicology ; 32(3): 300-308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36905483

RESUMEN

Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/toxicidad , Polipropilenos/toxicidad , Chironomidae/fisiología , Ecosistema , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Larva
7.
Chemphyschem ; 24(6): e202200715, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36450662

RESUMEN

Frustrated Lewis pairs (FLPs) have been widely investigated as promising catalysts due to their metal-free feature and ability to activate small molecules. Since their discovery, many works have been investigating how these Lewis pairs (intermolecular pairs) are held together in an encounter complex. This prompted several studies based on theoretical investigations, but experimental ones are limited yet. In this communication we show evidence of weak intermolecular interactions between Lewis acids and Lewis bases, distinguishing the Lewis adduct from FLPs, by probing fluorine-carbon vibrational modes using infrared spectroscopy. The main evidence is based on the band shifts occurring in FLPs due to weak hydrogen bonds between the hydrogen atoms of the Lewis base and the fluorine atoms of Lewis acid.

8.
Environ Pollut ; 292(Pt A): 118299, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626707

RESUMEN

Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , Humanos , América Latina , Microplásticos , Plásticos , ARN Viral , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Hazard Mater ; 416: 126124, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492918

RESUMEN

Plastics are ubiquitously used by societies, but most of the plastic waste is deposited in landfills and in the natural environment. Their degradation into submillimetre fragments, called microplastics, is a growing concern due to potential adverse effects on the environment and human health. Microplastics are present in the air and may be inhaled by humans, but whether they have deleterious effects on the respiratory system remain unknown. In this study, we determined the presence of microplastics in human lung tissues obtained at autopsies. Polymeric particles (n = 33) and fibres (n = 4) were observed in 13 of 20 tissue samples. All polymeric particles were smaller than 5.5 µm in size, and fibres ranged from 8.12 to 16.8 µm. The most frequently determined polymers were polyethylene and polypropylene. Deleterious health outcomes may be related to the heterogeneous characteristics of these contaminants in the respiratory system following inhalation.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Pulmón , Plásticos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
10.
Chemphyschem ; 22(6): 522-525, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512751

RESUMEN

A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.

11.
Chemphyschem ; 21(12): 1230-1234, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32274886

RESUMEN

The sorption of CO2 is often used to modify the macroscopic properties of liquids and solids. In the particular case of ionic liquids, different from molecular liquids, the sorption of CO2 may not induce volume expansions due to the strong Coulombic interactions between the ions of the fluid. However, a considerable viscosity decrease has been systematically observed. In order to understand the mechanisms of properties modifications in ionic fluids, herein we used Raman spectroscopy to probe the effect of CO2 on the structure of ionic liquids. It is shown that CO2 perturbs the electrostatic interactions between cations and anions, thus inducing a change in the polar domain of ionic liquids. It is observed that ionic liquids having bulkier ions are more prone to be perturbed by CO2 in comparison to ionic liquids having smaller ions. These results reveal new means of controlling the electrostatic forces between the ions and contributes to the mechanistic understanding of the modification of the macroscopic properties of ionic liquids by CO2 sorption.

12.
Environ Sci Pollut Res Int ; 26(1): 292-298, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30392176

RESUMEN

Antarctic pristine environment is threatened by the presence of microplastics that occur in a variety of shapes and sizes, from fibers to irregular fragments. The aim of this study is to assess the abundance, distribution, and the characterization of the microfibers in zooplankton samples found in ocean waters in Admiralty Bay, Antarctica. The samples were collected at five points in Admiralty Bay during the XXIX Brazilian Antarctic Expedition in the austral summer of 2010-2011. A total of 603 microfibers were collected in 60 samples, with an average abundance of 2.40 (± 4.57) microfibers 100 m-3. Microfiber size ranging from ca. 10 to 22 µm in diameter of various lengths and colors (blue, red, black, and clear) was collected and characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Most of these microfibers were entangled in various different zooplankton species and were identified as polymers composed mostly by polyethyleneglycols, polyurethanes, polyethylene terephthalates, and polyamides. The presence of such microfibers may cause the loss of biodiversity in the Antarctic continent, and the results presented herein can contribute to a better understanding of the impact caused by them within the food chain and human health. Graphical Abstract ᅟ.


Asunto(s)
Monitoreo del Ambiente/métodos , Plásticos/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Animales , Regiones Antárticas , Bahías/química , Biodiversidad , Brasil , Cadena Alimentaria , Humanos , Incidencia , Zooplancton
13.
J Chem Phys ; 148(13): 134908, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626876

RESUMEN

The properties of mixtures of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], with poly(ethyleneglycol) dimethyl ether, PEO, were described as a function of PEO chain size by molecular dynamics simulations. Both PEO chain size and mixture composition revealed to play a significant role in determining the structure and the dynamics of the fluids. The remarkably higher viscosity observed for mixtures composed by 0.25 mole fraction of PEO was attributed to the increase in the gauche population of OCCO dihedral of the polyether of longer chains. The negative solvation enthalpy (ΔsolH < 0) and entropy (ΔsolS < 0) revealed a favorable CO2 absorption by the neat and mixture systems. The CO2 absorption was higher in neat PEO, particularly considering longer chains. The gas solubility in the mixtures presented intermediate values in comparison to the neat PEO and neat ionic liquid. The CO2 solutions had their structures discussed in the light of the calculated radial and spatial distribution functions.

14.
PLoS One ; 10(6): e0129799, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043111

RESUMEN

The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.


Asunto(s)
Biomasa , Espacio Extracelular/química , Hypocrea/metabolismo , Espacio Intracelular/química , Níquel/química , Adsorción , Hypocrea/aislamiento & purificación , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Espectroscopía de Fotoelectrones , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
15.
PLoS One ; 8(9): e73701, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019934

RESUMEN

In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III) ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5) L mol(-1). The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn)(+)] from orange to magenta. The limit of detection (LOD) of calcium dipicolinate is around 2.0 × 10(-6) mol L(-1) and the LOD determined for both spores, B. cereus and B. anthracis, is (1.1 ± 0.3)× 10(6) spores mL(-1). This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.


Asunto(s)
Bacillus anthracis/fisiología , Beta vulgaris/química , Colorimetría/instrumentación , Ácidos Picolínicos/análisis , Raíces de Plantas/química , Esporas Bacterianas/química , Límite de Detección
16.
Phys Chem Chem Phys ; 11(34): 7491-8, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19690724

RESUMEN

The behavior of Au nanorods and Ag nanocubes as analytical sensors was evaluated for three different classes of herbicides. The use of such anisotropic nanoparticles in surface-enhanced Raman scattering (SERS) experiments allows the one to obtain the spectrum of crystal violet dye in the single molecule regime, as well as the pesticides dichlorophenoxyacetic acid (2,4-D), trichlorfon and ametryn. Such metallic substrates show high SERS performance at low analyte concentrations making them adequate for use as analytical sensors. Density functional theory (DFT) calculations of the geometries and vibrational wavenumbers of the adsorbates in the presence of silver or gold atoms were used to elucidate the nature of adsorbate-nanostructure bonding in each case and support the enhancement patterns observed in each SERS spectrum.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/química , Oro/química , Nanopartículas del Metal/química , Nanotubos/química , Plaguicidas/análisis , Plata/química , Espectrometría Raman/métodos , Ácido 2,4-Diclorofenoxiacético/análisis , Plaguicidas/química , Triazinas/análisis , Triazinas/química , Triclorfón/análisis , Triclorfón/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...