Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Mol Recognit ; : e3098, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924170

RESUMEN

Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.

2.
Biosystems ; 237: 105152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346553

RESUMEN

Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.


Asunto(s)
Alanina-ARNt Ligasa , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/metabolismo , Alanina/genética , Alanina/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Glicina , Serina/genética , Serina/metabolismo
3.
Entropy (Basel) ; 25(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37998179

RESUMEN

Biological systems have been shown to have quantum-like behaviors by applying the adaptive dynamics view on their interaction networks. In particular, in the process of lactose-glucose metabolism, cells generate probabilistic interference patterns similarly to photons in the two-slit experiment. Such quantum-like interference patterns can be found in biological data, on all scales, from proteins to cognitive, ecological, and social systems. The adaptive dynamics approach covers both biological and physical phenomena, including the ones which are typically associated with quantum physics. We guess that the adaptive dynamics can be used for the clarification of quantum foundations, and the present paper is the first step in this direction. We suggest the use of an algorithm for the numerical simulation of the behavior of a billiard ball-like particle passing through two slits by explicitly considering the influence of the two-slit environment (experimental context). Our simulation successfully mimics the interference pattern obtained experimentally in quantum physics. The interference of photons or electrons by two slits is known as a typical quantum mechanical effect. We do not claim that the adaptive dynamics can reproduce the whole body of quantum mechanics, but we hope that this numerical simulation example will stimulate further extensive studies in this direction-the representation of quantum physical phenomena in an adaptive dynamical framework.

4.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37698196

RESUMEN

Water is a unique and abundant substance in biological and chemical systems. Considering its importance and ubiquity, numerous water models have been developed to reproduce various properties of bulk water in molecular simulations. Therefore, selecting an appropriate water model suitable for the properties of interest is crucial for computational studies of water systems. The four-point Optimal Point Charge (OPC) and three-point OPC (OPC3) water models were developed in 2014 and 2016, respectively. These models reproduce numerous properties of bulk water with high accuracy, such as density, dielectric constant, heat of vaporization, self-diffusion coefficient, and surface tension. In this study, we evaluated the shear viscosities of the OPC and OPC3 water models at various temperatures ranging from 273 to 373 K using the Green-Kubo formalism to assess their performance. The evaluated viscosities of both models were very close to each other at all the examined temperatures. At temperatures above 310 K, the calculated shear viscosities were in excellent agreement with the experimental results. However, at lower temperatures, the water models systematically underestimated the shear viscosity, with the calculated values at 273 and 298 K being 20% and 10% lower than the experimental values, respectively. Despite this limitation, the OPC and OPC3 water models outperformed other widely used water models.

5.
Biology (Basel) ; 12(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37508441

RESUMEN

The class I ligase ribozyme consists of 121 nucleotides and shows a high catalytic rate comparable to that found in natural proteinaceous polymerases. In this study, we aimed to identify the smaller active unit of the class I ligase ribozyme comprising ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Based on the three-dimensional structure of the class I ligase ribozyme, mutants were prepared and their ligation activities were analyzed. Sufficient ligation activity was maintained even when shortening to 94 nucleotides. However, because it would be difficult to approach the target of ~50 nucleotides by removing only the partial structure, the class I ligase ribozyme was then split into two molecules. The ligation activity was maintained even when splitting into two molecules of 55 and 39 nucleotides. Using a system with similar split ribozymes, we analyzed the ligation activity of mutants C30, C47, and A71, which have been previously identified as the positions that contribute to catalytic activity, and discussed the structural basis of the activity of these bases. Our findings suggest the rationale for the class I ligase ribozyme's assembling from multiple fragments that would be achievable with prebiotic synthesis.

6.
Life (Basel) ; 13(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36983877

RESUMEN

Aminoacylation of a primordial RNA minihelix composed of D-ribose shows L-amino acid preference over D-amino acid without any ribozymes or enzymes. This preference in the amino acylation reaction likely plays an important role in the establishment of homochirality in L-amino acid in modern proteins. However, molecular mechanisms of the chiral selective reaction remain unsolved mainly because of difficulty in direct observation of the reaction at the molecular scale by experiments. For seeking a possible mechanism of the chiral selectivity, quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations of the aminoacylation reactions in a modeled RNA were performed to investigate differences in their free-energy profiles along the reactions for L- and D-alanine and its physicochemical origin. The reaction is initiated by approaching a 3'-oxygen of the RNA minihelix to the carbonyl carbon of an aminoacyl phosphate oligonucleotide. The QM/MM umbrella sampling MD calculations showed that the height of the free-energy barrier for L-alanine aminoacylation reaction was 17 kcal/mol, which was 9 kcal/mol lower than that for the D-alanine system. At the transition state, the distance between the negatively charged 3'-oxygen and the positively charged amino group of L-alanine was shorter than that of D-alanine, which was caused by the chirality difference of the amino acid. These results indicate that the transition state for L-alanine is more electrostatically stabilized than that for D-alanine, which would be a plausible mechanism previously unexplained for chiral selectivity in the RNA minihelix aminoacylation.

7.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893522

RESUMEN

In this study, we performed molecular dynamics (MD) simulations of the filling process of few-nanometer-wide trenches with various resist materials in ultraviolet nanoimprint lithography (UV-NIL) to identify the main molecular features necessary for a successful filling process. The 2- and 3-nm wide trenches were successfully filled with the resist materials that had (experimentally determined) viscosities less than 10 mPa·s. The resist composed of a three-armed bulky and highly viscous molecule could not fill the trenches. The radius of gyration of this molecule was smaller than half of the distance in which the first peak of its radial distribution function occurred. The available shapes of 1,6-hexanediol diacrylate (HDDA) and tri(propylene glycol) diacrylate (TPGDA), which are linear photopolymers, were compared to reveal that TPGDA is more flexible and adopts more conformations than HDDA. The terminal functional groups of TPGDA can be close due to its flexibility, which would increase the probability of intramolecular crosslinking of the molecule. This simulation result could explain the difference in hardness between the UV-cured HDDA and TPGDA based materials observed by experiments. The findings revealed by our MD simulations provide useful information for selecting and designing resists for fine patterning by UV-NIL.

8.
Life (Basel) ; 12(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455064

RESUMEN

The peptidyl transferase center (PTC) in the ribosome is composed of two symmetrically arranged tRNA-like units that contribute to peptide bond formation. We prepared units of the PTC components with putative tRNA-like structure and attempted to obtain peptide bond formation between aminoacyl-minihelices (primordial tRNAs, the structures composed of a coaxial stack of the acceptor stem on the T-stem of tRNA). One of the components of the PTC, P1c2UGGU (74-mer), formed a dimer and a peptide bond was formed between two aminoacyl-minihelices tethered by the dimeric P1c2UGGU. Peptide synthesis depended on both the existence of the dimeric P1c2UGGU and the sequence complementarity between the ACCA-3' sequence of the minihelix. Thus, the tRNA-like structures derived from the PTC could have originated as a scaffold of aminoacyl-minihelices for peptide bond formation through an interaction of the CCA sequence of minihelices. Moreover, with the same origin, some would have evolved to constitute the present PTC of the ribosome, and others to function as present tRNAs.

9.
J Biol Chem ; 297(5): 101254, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34592316

RESUMEN

Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Membrana Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/genética , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/genética , Proteínas de Transporte Vesicular/genética
10.
Biochem Biophys Res Commun ; 575: 90-95, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34461441

RESUMEN

tRNATyr of Nanoarchaeum equitans has a remarkable feature with an extra guanosine residue at the 5'-terminus. However, the N. equitans tRNATyr mutant without extra guanosine at the 5'-end was tyrosylated by tyrosyl-tRNA synthase (TyrRS). We solved the crystal structure of N. equitans TyrRS at 2.80 Å resolution. By comparing the present solved structure with the complex structures TyrRS with tRNATyr of Thermus thermophilus and Methanocaldococcus jannaschii, an arginine substitution mutant of N. equitans TyrRS at Ile200 (I200R), which is the putative closest candidate to the 5'-phosphate of C1 of N. equitans tRNATyr, was prepared. The I200R mutant tyrosylated not only wild-type tRNATyr but also the tRNA without the G-1 residue. Further tyrosylation analysis revealed that the second base of the anticodon (U35), discriminator base (A73), and C1:G72 base pair are strong recognition sites.


Asunto(s)
Proteínas Arqueales/química , Cristalografía por Rayos X/métodos , Guanosina/química , Nanoarchaeota/enzimología , ARN de Transferencia de Tirosina/química , Tirosina-ARNt Ligasa/química , Aminoacilación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Modelos Moleculares , Elementos Estructurales de las Proteínas , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
11.
Nat Protoc ; 16(7): 3439-3469, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050337

RESUMEN

The nucleosome is the basic organizational unit of the genome. The folding structure of nucleosomes is closely related to genome functions, and has been reported to be in dynamic interplay with binding of various nuclear proteins to genomic loci. Here, we describe our high-throughput chromosome conformation capture with nucleosome orientation (Hi-CO) technology to derive 3D nucleosome positions with their orientations at every genomic locus in the nucleus. This technology consists of an experimental procedure for nucleosome proximity analysis and a computational procedure for 3D modeling. The experimental procedure is based on an improved method of high-throughput chromosome conformation capture (Hi-C) analysis. Whereas conventional Hi-C allows spatial proximity analysis among genomic loci with 1-10 kbp resolution, our Hi-CO allows proximity analysis among DNA entry or exit points at every nucleosome locus. This analysis is realized by carrying out ligations among the entry/exit points in every nucleosome in a micrococcal-nuclease-fragmented genome, and by quantifying frequencies of ligation products with next-generation sequencing. Our protocol has enabled this analysis by cleanly excluding unwanted non-ligation products that are abundant owing to the frequent genome fragmentation by micrococcal nuclease. The computational procedure is based on simulated annealing-molecular dynamics, which allows determination of optimized 3D positions and orientations of every nucleosome that satisfies the proximity ligation data sufficiently well. Typically, examination of the Saccharomyces cerevisiae genome with 130 million sequencing reads facilitates analysis of a total of 66,360 nucleosome loci with 6.8 nm resolution. The technique requires 2-3 weeks for sequencing library preparation and 2 weeks for simulation.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Simulación de Dinámica Molecular
12.
Epilepsy Behav Rep ; 15: 100405, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33437959

RESUMEN

We report a patient with a 6q22.1 deletion, who presented with a rare syndrome of generalized epilepsy, myoclonic tremor, and intellectual disability. There was no clinical progression after follow-up for more than 10 years. Our report presents the genetic basis for a phenotype involving a non-progressive generalized epilepsy with tremor. The efficacy of valproic acid for seizure control and the partial efficacy of deep brain stimulation with propranolol for myoclonic tremor is detailed.

13.
J Mol Evol ; 88(10): 759-760, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33237363

RESUMEN

In the original version of this article, "A73" in Fig 6b was inadvertently labeled as "G73". The corrected Fig. 6 is given here.

14.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 993-1000, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021501

RESUMEN

Vasohibins regulate angiogenesis, tumor growth, metastasis and neuronal differentiation. They form a complex with small vasohibin-binding protein (SVBP) and show tubulin tyrosine carboxypeptidase activity. Recent crystal structure determinations of vasohibin-SVBP complexes have provided a molecular basis for complex formation, substrate binding and catalytic activity. However, the regulatory mechanism and dynamics of the complex remain elusive. Here, the crystal structure of the VASH1-SVBP complex and a molecular-dynamics simulation study are reported. The overall structure of the complex was similar to previously reported structures. Importantly, however, the structure revealed a domain-swapped heterotetramer that was formed between twofold symmetry-related molecules. This heterotetramerization was stabilized by the mutual exchange of ten conserved N-terminal residues from the VASH1 structural core, which was intramolecular in other structures. Interestingly, a comparison of this region with previously reported structures revealed that the patterns of hydrogen bonding and hydrophobic interactions vary. In the molecular-dynamics simulations, differences were found between the heterotetramer and heterodimer, where the fluctuation of the N-terminal region in the heterotetramer was suppressed. Thus, heterotetramer formation and flexibility of the N-terminal region may be important for enzyme activity and regulation.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
15.
J Mol Evol ; 88(6): 501-509, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32382786

RESUMEN

Nanoarchaeum equitans is a species of hyperthermophilic archaea with the smallest genome size. Its alanyl-tRNA synthetase genes are split into AlaRS-α and AlaRS-ß, encoding the respective subunits. In the current report, we surveyed N. equitans AlaRS-dependent alanylation of RNA minihelices, composed only of the acceptor stem and the T-arm of tRNAAla. Combination of AlaRS-α and AlaRS-ß showed a strong alanylation activity specific to a single G3:U70 base pair, known to mark a specific tRNA for charging with alanine. However, AlaRS-α alone had a weak but appreciable alanylation activity that was independent of the G3:U70 base pair. The shorter 16-mer RNA tetraloop substrate mimicking only the first four base pairs of the acceptor stem of tRNAAla, but with C3:G70 base pair, was also successfully aminoacylated by AlaRS-α. The end of the acceptor stem, including CCA-3' terminus and the discriminator A73, was able to function as a minimal structure for the recognition by the enzyme. Our findings imply that aminoacylation by N. equitans AlaRS-α may represent a vestige of a primitive aminoacylation system, before the appearance of the G3:U70 pair as an identity element for alanine.


Asunto(s)
Alanina-ARNt Ligasa , Aminoacil-ARNt Sintetasas , Nanoarchaeota , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Nanoarchaeota/enzimología , Nanoarchaeota/genética , Conformación de Ácido Nucleico , ARN
16.
Life (Basel) ; 10(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024042

RESUMEN

In the present in vitro selection study, we isolated and characterized RNA aptamers for a tRNA-binding protein (Trbp) from an extremophile archaeon Aeropyrum pernix. Trbp-like structures are frequently found not only in aminoacyl-tRNA synthetases but also in diverse types of proteins from different organisms. They likely arose early in evolution and have played important roles in evolution through interactions with key RNA structures. RNA aptamers specific for A. pernix Trbp were successfully selected from a pool of RNAs composed of 60 nucleotides, including a random 30-nucleotide region. From the secondary structures, we obtained a shortened sequence composed of 21 nucleotides, of which the 3'-terminal single stranded CA nucleotides are essential for binding. This may be related to the initial evolutionary role of the universal CCA-3' terminus of tRNA in the interaction with Trbp-like structures.

17.
Biochem Biophys Res Commun ; 511(2): 228-233, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30771900

RESUMEN

This study reports the X-ray crystallographic structure of the glycyl-tRNA synthetase (GlyRS) of Nanoarchaeum equitans - a hyperthermophilic archaeal species. This is the first archaeal GlyRS crystal structure elucidated. The GlyRS comprises an N-terminal catalytic domain and a C-terminal anticodon-binding domain with a long ß-sheet inserted between these domains. An unmodified transcript of the wild-type N. equitans tRNAGly was successfully glycylated using GlyRS. Substitution of the discriminator base A73 of tRNAGly with any other nucleotide caused a significant decrease in glycylation activity. Mutational analysis of the second base-pair C2G71 of the acceptor stem of tRNAGly elucidated the importance of the base-pair, especially G71, as an identity element for recognition by GlyRS. Glycylation assays using tRNAGly G71 substitution mutants and a GlyRS mutant where Arg223 is mutated to alanine strengthen the possibility that the carbonyl oxygen at position 6 of G71 would hydrogen-bond with the guanidine nitrogen of Arg223 in N. equitans GlyRS.


Asunto(s)
Proteínas Arqueales/química , Glicina-ARNt Ligasa/química , Nanoarchaeota/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Glicina-ARNt Ligasa/metabolismo , Modelos Moleculares , Nanoarchaeota/química , Nanoarchaeota/metabolismo , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Alineación de Secuencia
18.
Cell ; 176(3): 520-534.e25, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661750

RESUMEN

Elucidating the global and local rules that govern genome-wide, hierarchical chromatin architecture remains a critical challenge. Current high-throughput chromosome conformation capture (Hi-C) technologies have identified large-scale chromatin structural motifs, such as topologically associating domains and looping. However, structural rules at the smallest or nucleosome scale remain poorly understood. Here, we coupled nucleosome-resolved Hi-C technology with simulated annealing-molecular dynamics (SA-MD) simulation to reveal 3D spatial distributions of nucleosomes and their genome-wide orientation in chromatin. Our method, called Hi-CO, revealed distinct nucleosome folding motifs across the yeast genome. Our results uncovered two types of basic secondary structural motifs in nucleosome folding: α-tetrahedron and ß-rhombus analogous to α helix and ß sheet motifs in protein folding. Using mutants and cell-cycle-synchronized cells, we further uncovered motifs with specific nucleosome positioning and orientation coupled to epigenetic features at individual loci. By illuminating molecular-level structure-function relationships in eukaryotic chromatin, our findings establish organizational principles of nucleosome folding.


Asunto(s)
Cromatina/ultraestructura , Nucleosomas/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Cromosomas/metabolismo , Cromosomas/ultraestructura , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción
19.
Nucleic Acids Res ; 46(21): 11144-11152, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30321374

RESUMEN

The origin of homochirality in L-amino acid in proteins is one of the mysteries of the evolution of life. Experimental studies show that a non-enzymatic aminoacylation reaction of an RNA minihelix has a preference for L-amino acid over D-amino acid. The reaction initiates by approaching of a 3'-oxygen of the RNA minihelix to the carbonyl carbon of an aminoacyl phosphate oligonucleotide. Here, employing molecular dynamics simulations, we examined the possible mechanisms that determine this chiral selectivity. The simulation system adopted a geometry required for the chemical reaction to occur more frequently with L-alanine than that with D-alanine. For L-alanine, the structure with this geometry was formed by a combination of stable dihedral angles along alanyl phosphate backbone with a canonical RNA structure, where the methyl group of alanine was placed on the opposite side of the approaching 3'-hydroxyl group with respect to the carbonyl plane. For D-alanine, the methyl group and the 3'-hydroxyl group were placed on the same side with respect to the carbonyl plane, which significantly decreased its ability to approach 3'-oxygen close to the carbonyl carbon compared to L-alanine. The mechanism suggested herein can explain experimentally observed chiral preferences.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Estereoisomerismo , Alanina/química , Aminoácidos/química , Aminoacilación , Glicina/química , Simulación de Dinámica Molecular , Oxígeno/química , Fosfatos/química , Electricidad Estática
20.
J Clin Neurosci ; 44: 164-168, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28676310

RESUMEN

We retrospectively investigated the effects of subthalamic nucleus stimulation (STN-DBS) on new postoperative onset of cognitive decline and prognostic factors for advanced Parkinson's disease (PD). We studied 39 PD patients who had received bilateral STN-DBS. Clinical symptoms, cognitive function, psychiatric function, and health-related quality of life (HRQOL) were assessed before and six months after surgery. Based on the results of neuropsychological examinations six months after the surgery, the subjects were divided into those with and those without cognitive decline. We compared pre- and post-operative assessments between the two groups. Prognostic factors were investigated using multiple logistic regression analyses. Seven patients had cognitive decline six months after the operation (17.9%); they were significantly older than those without cognitive decline. Preoperative neuropsychological examinations revealed impairments in language and executive function. No differences were found in clinical symptoms. Patients with cognitive decline had significantly worse apathy scale scores. The HRQOL revealed significant declines in the Mental Component Summary (MCS), vitality, and mental health (MH) domains. Postoperative comparisons revealed novel significant differences in activities of daily living in the "on" and "off" states and in daytime drowsiness. Preoperative differences seen in the MCS and vitality indices were no longer present. Word fluency, and apathy scale and MH scores were independent preoperative prognostic factors for cognitive decline. New postoperative onset of cognitive decline due to STN-DBS affected activities of daily living and psychiatric function. Preoperative non-motor symptoms may be prognostic factors for new onset of cognitive decline.


Asunto(s)
Disfunción Cognitiva/etiología , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Complicaciones Posoperatorias , Actividades Cotidianas , Anciano , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Calidad de Vida , Núcleo Subtalámico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA