Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 243: 116081, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452422

RESUMEN

Seen initially as wonder drugs, the widespread and often inappropriate use of antibiotics led to the development of microbial resistances. As a result, a true emergency has arisen, and a significant need has emerged to discover and develop new safe and valuable antibiotics. The captivating chemical structure of the fungal metabolite diplopyrone C has caught our attention as an excellent candidate for a circumstantial study aimed at revealing its antimicrobial and antibiofilm activities. In this work, we describe the full analytical strategy from the isolation/identification to the evaluation of the metabolomics effect on target microorganisms of this fungal metabolite. Our results show interesting antimicrobial and antibiofilm activities of diplopyrone C against two frequently isolated nosocomial pathogens (i.e., the fungus Candida albicans and the gram-negative bacterium Klebsiella pneumoniae). Moreover, a GC-MS based metabolomics footprinting approach gave an insight into the uptake and excretion of metabolites from and into the culture medium as a response to the presence of this active substance. The workflow employed in this study is suitable to exploit natural resources for the search of lead compounds for drug development.


Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Pironas , Humanos , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/farmacología , Biopelículas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257350

RESUMEN

In the search for new alternative biocontrol strategies, phytopathogenic fungi could represent a new frontier for weed management. In this respect, as part of our ongoing work aiming at using fungal pathogens as an alternative to common herbicides, the foliar pathogen Nigrospora sphaerica has been evaluated to control buffelgrass (Cenchrus ciliaris). In particular, in this work, the isolation and structural elucidation of two new biosynthetically related metabolites, named nigrosphaeritriol (3-(hydroxymethyl)-2-methylpentane-1,4-diol) and nigrosphaerilactol (3-(1-hydroxyethyl)-4-methyltetrahydrofuran-2-ol), from the phytotoxic culture filtrate extract were described, along with the identification of several known metabolites. Moreover, the absolute stereochemistry of (3R,4S,5S)-nigrosphaerilactone, previously reported as (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, was determined for the first time by X-ray diffraction analysis. Considering their structural relationship, the determination of the absolute stereochemistry of nigrosphaerilactone allowed us to hypothesize the absolute stereochemistry of nigrosphaeritriol and nigrosphaerilactol.


Asunto(s)
Ascomicetos , Cenchrus , Malezas , Cristalografía por Rayos X
3.
Nat Prod Res ; : 1-7, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38031740

RESUMEN

Pleurotus tuber-regium was isolated from a dead trunk of Raphia farinifera (Arecaceae) in a lowland moist forest in Antsohihy, Madagascar, and the species was confirmed by molecular analysis and morphological observations. The main bioactive metabolites of the mycelium extracts were identified by mass spectrometry techniques. Five structural diverse metabolites, tryptophol, pyroglutamic acid, prolyldiketopiperazine B, sporol and RKS-1778, were characterised by LC-MS qTOF analysis of the hydro-alcoholic extract. GC-MS analysis of both chloroform and ethyl acetate extracts revealed the presence of several saturated and -unsaturated fatty acids and their esters derivatives.

4.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687130

RESUMEN

Diplodia corticola is one of the most aggressive fungal pathogens of Quercus species involved in the decline of Mediterranean oak forests. In this study, three strains of D. corticola associated with holm (Quercus ilex) and cork (Quercus suber) oak trees exhibiting dieback symptoms and cankers in Algeria were selected to investigate the production of secondary metabolites. Metabolomic analyses revealed the production of several known compounds, such as sphaeropsidins, diplopyrones and diplofuranones. Moreover, the comparative investigation of secondary metabolites produced by the analyzed strains with different degrees of virulence revealed possible implications of these compounds in the fungal virulence. In particular, sphaeropsidins seem to be the main phytotoxic compounds of D. corticola involved in the infections of Quercus species, with a possible synergistic influence of the less representative compounds in the fungal virulence.


Asunto(s)
Ascomicetos , Quercus , Virulencia , Argelia
5.
Antibiotics (Basel) ; 12(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627739

RESUMEN

Recent studies have demonstrated that 3-O-methylfunicone (OMF), a fungal secondary metabolite from Talaromyces pinophilus belonging to the class of funicone-like compounds, has antiviral activity against canine coronaviruses (CCoV), which causes enteritis in dogs. Herein, we selected two additional funicone-like compounds named vermistatin (VER) and penisimplicissin (PS) and investigated their inhibitory activity towards CCoV infection. Thus, both compounds have been tested for their cytotoxicity and for antiviral activity against CCoV in A72 cells, a fibrosarcoma cell line suitable for investigating CCoV. Our findings showed an increase in cell viability, with an improvement of morphological features in CCoV-infected cells at the non-toxic doses of 1 µM for VER and 0.5 µM for PS. In addition, we observed that these compounds caused a strong inhibition in the expression of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor which is activated during CCoV infection. Our results also showed the alkalinization of lysosomes in the presence of VER or PS, which may be involved in the observed antiviral activities.

6.
Microorganisms ; 11(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37317276

RESUMEN

In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper.

7.
Toxins (Basel) ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37104175

RESUMEN

Staphylococcus aureus is a Gram-positive bacterium, which can be found, as a commensal microorganism, on the skin surface or in the nasal mucosa of the human population. However, S. aureus may become pathogenic and cause severe infections, especially in hospitalized patients. As an opportunistic pathogen, in fact, S. aureus interferes with the host Ca2+ signaling, favoring the spread of the infection and tissue destruction. The identification of novel strategies to restore calcium homeostasis and prevent the associated clinical outcomes is an emerging challenge. Here, we investigate whether harzianic acid, a bioactive metabolite derived from fungi of the genus Trichoderma, could control S. aureus-induced Ca2+ movements. First, we show the capability of harzianic acid to complex calcium divalent cations, using mass spectrometric, potentiometric, spectrophotometric, and nuclear magnetic resonance techniques. Then, we demonstrate that harzianic acid significantly modulates Ca2+ increase in HaCaT (human keratinocytes) cells incubated with S. aureus. In conclusion, this study suggests harzianic acid as a promising therapeutical alternative against diseases associated with Ca2+ homeostasis alteration.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Calcio/metabolismo , Queratinocitos , Mucosa Nasal/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
8.
Toxins (Basel) ; 15(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36828414

RESUMEN

Hazelnuts represent a potential source of mycotoxins that pose a public health issue due to their increasing consumption as food ingredients worldwide. Hazelnuts contamination by mycotoxins may derive from fungal infections occurring during fruit development, or in postharvest. The present review considers the available data on mycotoxins detected in hazelnuts, on fungal species reported as infecting hazelnut fruit, and general analytical approaches adopted for mycotoxin investigation. Prompted by the European safety regulation concerning hazelnuts, many analytical methods have focused on the determination of levels of aflatoxin B1 (AFB1) and total aflatoxins. An overview of the available data shows that a multiplicity of fungal species and further mycotoxins have been detected in hazelnuts, including anthraquinones, cyclodepsipeptides, ochratoxins, sterigmatocystins, trichothecenes, and more. Hence, the importance is highlighted in developing suitable methods for the concurrent detection of a broad spectrum of these mycotoxins. Moreover, control strategies to be employed before and after harvest in the aim of controlling the fungal contamination, and in reducing or inactivating mycotoxins in hazelnuts, are discussed.


Asunto(s)
Aflatoxinas , Corylus , Micotoxinas , Micotoxinas/análisis , Corylus/microbiología , Contaminación de Alimentos/análisis , Aflatoxinas/análisis , Aflatoxina B1
9.
Sci Rep ; 13(1): 1789, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720953

RESUMEN

Contamination of microalgae cultures can reduce their productivity and affect the quality of biomass and valuable bioproducts. In this article, after having isolated and identified for the first time the filamentous fungus Penicillium citrinum from heterotrophic cultures of the red polyextremophilic microalga Galdieria sulphuraria, we investigated the biological and metabolic significance of this alga-fungus association. In the same medium, both organisms grow better in each other's presence than separately. Both cell density and cell size of G. sulphuraria increase in co-cultures compared to pure alga cultures. In co-cultures, despite very severe growth conditions, the load of P. citrinum increases compared to pure fungus cultures. Optical microscope images have shown physical contact between cells of P. citrinum hyphae and G. sulphuraria which, however, retain their morphology and cell wall intact. GC-MS-based metabolomics analysis of metabolites excreted in the culture medium shows that pure cultures of the fungus and alga and co-cultures of alga plus fungus can be easily differentiated based on their metabolic products. Indeed, a richer assortment of extracellular metabolites (comprising both products of primary and secondary metabolism) is a distinct feature of co-cultures compared to both pure alga and pure fungus cultures.


Asunto(s)
Microalgas , Penicillium , Hongos , Hifa
10.
Nat Prod Res ; 37(3): 424-433, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34514928

RESUMEN

Mitidjospirone, a new spiridioxynaphthalene, was isolated from the mycelial extract of a strain of Lasiodiplodia mitidjana, a recently described species belonging to the family Botryosphaeriaceae. Its structure was elucidated by extensive spectroscopic analysis and the absolute configuration was determined by electronic circular dichroism (ECD) experiment. Furthermore, several known compounds were identified during the screening of secondary metabolites produced by four strains of L. mitidjana.


Asunto(s)
Ascomicetos , Citrus sinensis , Hongos Mitospóricos , Cromatografía de Gases y Espectrometría de Masas , Filogenia , Enfermedades de las Plantas , Ascomicetos/metabolismo
11.
PLoS One ; 17(12): e0279069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36512606

RESUMEN

The fungus Candida glabrata and the bacterium Staphylococcus epidermidis are important biofilm-forming microorganisms responsible of nosocomial infections in patients. In addition to causing single-species disease, these microorganisms are also involved in polymicrobial infections leading to an increased antimicrobial resistance. To expand knowledge about polymicrobial biofilms, in this study we investigate the formation of single- and dual-species biofilms of these two opportunistic pathogens employing several complementary approaches. First, biofilm biomass, biofilm metabolic activity and the microbial composition in single- and dual-species biofilms were assessed and compared. Then, the expression of three genes of C. glabrata and three genes of S. epidermidis positively related to the process of biofilm formation was evaluated. Although S. epidermidis is a stronger biofilm producer than C. glabrata, both biological and genetic data indicate that S. epidermidis growth is inhibited by C. glabrata which dominates the dual-species biofilms. To better understand the mechanisms of the interactions between the two microorganisms, a broad GC-MS metabolomic dataset of extracellular metabolites for planktonic, single- and dual-species biofilm cultures of C. glabrata and S. epidermidis was collected. As demonstrated by Partial Least Squares Discriminant Analysis (PLS-DA) of GC-MS metabolomic data, planktonic cultures, single- and dual-species biofilms can be sharply differentiated from each other by the nature and levels of an assortment of primary and secondary metabolites secreted in the culture medium. However, according to our data, 2-phenylethanol (secreted by C. glabrata) and the synergistically combined antifungal activity of 3-phenyllactic acid and of the cyclic dipeptide cyclo-(l-Pro-l-Trp) (secreted by S. epidermidis) play a major role in the race of the two microorganisms for predominance and survival.


Asunto(s)
Candida glabrata , Staphylococcus epidermidis , Humanos , Biopelículas , Interacciones Microbianas , Antifúngicos/farmacología , Antifúngicos/metabolismo , Candida albicans
12.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421238

RESUMEN

Canine coronavirus (CCoV), an alphacoronavirus, may cause self-limiting enteric disease in dogs, especially in puppies. The noteworthy plasticity of coronaviruses (CoVs) occurs through mutation and recombination processes, which sometimes generate new dangerous variants. The ongoing SARS-CoV-2 pandemic and the isolation of a novel canine-feline recombinant alphacoronavirus from humans emphasizes the cross-species transmission ability of CoVs. In this context, exploring antiviral compounds is essential to find new tools for fighting against CoVs infections. Fungi produce secondary metabolites, which are often developed as antibiotics, fungicides, hormones, and plant growth regulators. Previous examinations of benzo-γ-pyrone 3-O-methylfunicone (OMF), obtained from Talaromyces pinophilus, showed that it reduces the infectivity of hepatitis C virus and bovine herpesvirus 1. Based on this evidence, this study evaluated the antiviral ability of OMF against CCoV infection in a canine fibrosarcoma (A72) cell line. During CCoV infection, a non-toxic dose of OMF markedly increased features of cell viability. Moreover, OMF induced a significant reduction in virus yield in the presence of an intense downregulation of the viral nucleocapsid protein (NP). These findings occurred in the presence of a marked reduction in the aryl hydrocarbon receptor (AhR) expression. Taken together, preliminary findings suggest that OMF inhibiting AhR shows promising activity against CCoV infection.

13.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235005

RESUMEN

Rare-earth elements (REEs) are in all respect a class of new contaminants that may have toxic effects on organisms and microorganisms and information on their interactions with natural ligands should be of value to predict and control their diffusion in natural environments. In the current study, we investigate interactions of tripositive cations of praseodymium, europium, holmium, and thulium with harzianic acid (H2L), a secondary metabolite produced by selected strains of fungi belonging to the Trichoderma genus. We applied the same techniques and workflow previously employed in an analogous study concerning lanthanum, neodymium, samarium, and gadolinium tripositive cations. Therefore, in the current study, HPLC-ESI-HRMS experiments, circular dichroism (CD), and UV-Vis spectrophotometric absorption data, as well as accurate pH measurements, were applied to characterize bonding interactions between harzianic acid and Pr3+, Eu3+, Ho3+, and Tm3+ cations. Problems connected to the low solubility of harzianic acid in water were overcome by employing a 0.1 M NaClO4/(CH3OH + H2O 50/50 w/w) mixed solvent. For Pr3+, Ho3+, and Tm3+, only the mono complexes PrL+, HoL+, and TmL+ were detected and their formation constant determined. Eu3+ forms almost exclusively the bis complex EuL2- for which the corresponding formation constant is reported; under our experimental conditions, the mono complex EuL+ is irrelevant. Combining the results of the present and previous studies, a picture of interactions of harzianic acid with rare-earth cations extending over 8 of the 17 REEs can be composed. In order to complement chemical information with toxicological information, a battery of bioassays was applied to evaluate the effects of praseodymium, europium, holmium, and thulium tripositive cations on a suite of bioindicators including Aliivibrio fischeri (Gram-negative bacterium), Raphidocelis subcapitata (green alga), and Daphnia magna (microcrustacean), and median effective concentration (EC50) values of Pr3+, Eu3+, Ho3+, and Tm3+ for the tested species were assessed.


Asunto(s)
Metales de Tierras Raras , Praseodimio , Cationes , Biomarcadores Ambientales , Europio/química , Gadolinio , Holmio , Hidroxibutiratos , Lantano , Metales de Tierras Raras/análisis , Neodimio , Pirroles , Samario , Solventes , Tulio , Agua
14.
Chem Biodivers ; 19(8): e202200134, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789537

RESUMEN

The lichen's special symbiotic structure enables it to produce bioactive substances. They have historically been recognized for their aesthetic and medicinal benefits. Furthermore, in recent years, they have performed in various fields, including perfumery, dyeing, and pharmacology due to their rich secondary metabolites. From our study, four compounds were isolated from organic extracts of Parmotrema hypoleucinum, Roccella phycopsis, and Xanthoria parietina and identified by spectroscopic investigation as atranorin, (+)-iso-usnic acid, methyl orsellinate, and parietin, respectively. The anti-inflammatory effects of lichens extracts, and pure compounds were evaluated on RAW 264.7 macrophages cells at different concentrations. At 25 µg/mL all treated samples did not show any effect on cell viability. Atranorin and (+)-iso-usnic acid showed an inhibitory effect on nitric oxide (NO) levels in lipopolysaccharide (LPS)-stimulated macrophages. Nitric oxide (NO) production was measured using Griess reagent, atranorin and (+)-iso-usnic acid showed a high anti-inflammatory potential (75.99 % and 57.27 % at 25 µg/mL). On the other hand, methyl orsellinate and the organic extracts of three lichens showed good anti-inflammatory activity ranging from 29.16 % at 25 µg/mL to 86.91 % at 100 µg/mL.


Asunto(s)
Antineoplásicos , Líquenes , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Supervivencia Celular , Líquenes/química , Óxido Nítrico/metabolismo
15.
Toxins (Basel) ; 14(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878204

RESUMEN

Funicone-like compounds are a homogeneous group of polyketides that, so far, have only been reported as fungal secondary metabolites. In particular, species in the genus Talaromyces seem to be the most typical producers of this group of secondary metabolites. The molecular structure of funicone, the archetype of these products, is characterized by a γ-pyrone ring linked through a ketone group to a α-resorcylic acid nucleus. This review provides an update on the current knowledge on the chemistry of funicone-like compounds, with special emphasis on their classification, occurrence, and diverse biological activities. In addition, their potential relevance as mycotoxins is discussed.


Asunto(s)
Penicillium , Policétidos , Talaromyces , Penicillium/metabolismo , Policétidos/metabolismo , Pironas/metabolismo , Pironas/farmacología , Talaromyces/metabolismo
16.
Molecules ; 27(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35408726

RESUMEN

An undescribed 5,6-dihydropyran-2-one, namely diplopyrone C, was isolated and characterized from the cultures of an isolate of the fungus Diplodia corticola recovered from Quercus suber in Algeria. The structure and relative stereostructure of (5S,6S,7Z,9S,10S)-5-hydroxy-6-(2-(3-methyloxiran-2-yl)vinyl)-5,6-dihydro-2H-pyran-2-one were assigned essentially based on NMR and MS data. Furthermore, ten known compounds were isolated and identified in the same cultures. The most abundant product, the tetracyclic pimarane diterpene sphaeropsidin A, was tested for insecticidal effects against the model sucking aphid, Acyrthosiphon pisum. Results showed a toxic dose-dependent oral activity of sphaeropsidin A, with an LC50 of 9.64 mM.


Asunto(s)
Áfidos , Ascomicetos , Diterpenos , Animales , Ascomicetos/química , Diterpenos/química , Estructura Molecular , Enfermedades de las Plantas/microbiología
17.
Molecules ; 27(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335320

RESUMEN

Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Cationes , Hongos , Hidroxibutiratos , Elementos de la Serie de los Lantanoides/química , Metales de Tierras Raras/química , Pirroles
18.
Microorganisms ; 10(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35056637

RESUMEN

Bovine herpesvirus type-1 (BoHV-1) is a widespread pathogen that provokes infectious rhinotracheitis and polymicrobial infections in cattle, resulting in serious economic losses to the farm animal industry and trade restrictions. To date, non-toxic active drugs against BoHV-1 are not available. The exploitation of bioactive properties of microbial products is of great pharmaceutical interest. In fact, fungi are a promising source of novel drugs with a broad spectrum of activities and functions, including antiviral properties. Hence, the potential antiviral properties of 3-O-methylfunicone (OMF), a secondary metabolite produced by Talaromyces pinophilus, were evaluated on BoHV-1. In this study, during BoHV-1 infection in bovine cells (MDBK), the non-toxic concentration of 5 µM OMF considerably reduced signs of cell death and increased cell proliferation. Furthermore, OMF significantly decreased the virus titer as well as the cytopathic effect and strongly inhibited the expression of bICP0, the major regulatory protein in the BoHV-1 lytic cycle. These findings were accompanied by a considerable up-regulation in the expression of the aryl hydrocarbon receptor (AhR), a multifunctional transcription factor also linked to the host's response to a herpesvirus infection. Overall, our results suggest that by involving AhR, OMF shows potential against a BoHV-1 infection.

19.
Toxins (Basel) ; 13(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34678983

RESUMEN

Phytopathogen fungi are responsible for serious plant diseases which might negatively affect crop productivity [...].


Asunto(s)
Hongos/fisiología , Enfermedades de las Plantas/microbiología , Productos Agrícolas/microbiología , Hongos/metabolismo , Hongos/patogenicidad , Micotoxinas/biosíntesis , Plantas/microbiología , Virulencia
20.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34445744

RESUMEN

Emergence of Candida tropicalis, which causes potential life-threatening invasive candidiasis, is often associated with colonization of medical devices as biofilm. Biofilm plays an important role in the virulence of the pathogen because of its complex structure, which provides resistance to conventional antimicrobials. In this study, the metabolic response of a clinical strain of C. tropicalis colonizing three distinct surfaces (polytetrafluoroethylene (PTFE), polystyrene, and polycarbonate) as well as the expression of virulence and stress related genes (ALS3, Hsp21, SAP1, SAP2, SAP3, and CYR1), were explored. Our results showed that lesser biofilm was developed on PTFE compared to polystyrene and polycarbonate. GS-MS metabolic analysis identified a total of 36 metabolites in the intracellular extract of cells grown on polystyrene, polycarbonate, and PTFE, essentially belonging to central carbon metabolism, amino acids, and lipids metabolism. The metabolic analysis showed that saturated and unsaturated fatty acids are preferentially produced during biofilm development on polycarbonate, whereas trehalose and vitamin B6, known as cellular protectors against a variety of stressors, were characteristic of biofilm on PTFE. The results of the transcriptomic analysis consider the different degrees of colonization of the three substrates, being CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA, downregulated in PTFE biofilm compared to polycarbonate or polystyrene biofilms, while Hsp21 was upregulated in concomitance with the potential unfavorable conditions for biofilm formation on PTFE. Overall, this work provides new insights into the knowledge of C. tropicalis biofilm development on surfaces of medical relevance in the perspective of improving the management of Candida infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida tropicalis/metabolismo , Proteínas Fúngicas/metabolismo , Candida tropicalis/genética , Candida tropicalis/patogenicidad , Proteínas Fúngicas/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...