Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 17: 1120338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731462

RESUMEN

Inhibitory circuits in the basal amygdala (BA) have been shown to play a crucial role in associative fear learning. How the excitatory synaptic inputs received by BA GABAergic interneurons are influenced by memory formation, a network parameter that may contribute to learning processes, is still largely unknown. Here, we investigated the features of excitatory synaptic transmission received by the three types of perisomatic inhibitory interneurons upon cue-dependent fear conditioning and aversive stimulus and tone presentations without association. Acute slices were prepared from transgenic mice: one group received tone presentation only (conditioned stimulus, CS group), the second group was challenged by mild electrical shocks unpaired with the CS (unsigned unconditioned stimulus, unsigned US group) and the third group was presented with the CS paired with the US (signed US group). We found that excitatory synaptic inputs (miniature excitatory postsynaptic currents, mEPSCs) recorded in distinct interneuron types in the BA showed plastic changes with different patterns. Parvalbumin (PV) basket cells in the unsigned US and signed US group received mEPSCs with reduced amplitude and rate in comparison to the only CS group. Coupling the US and CS in the signed US group caused a slight increase in the amplitude of the events in comparison to the unsigned US group, where the association of CS and US does not take place. Excitatory synaptic inputs onto cholecystokinin (CCK) basket cells showed a markedly different change from PV basket cells in these behavioral paradigms: only the decay time was significantly faster in the unsigned US group compared to the only CS group, whereas the amplitude of mEPSCs increased in the signed US group compared to the only CS group. Excitatory synaptic inputs received by PV axo-axonic cells showed the least difference in the three behavioral paradigm: the only significant change was that the rate of mEPSCs increased in the signed US group when compared to the only CS group. These results collectively show that associative learning and aversive stimuli unpaired with CS cause different changes in excitatory synaptic transmission in BA perisomatic interneuron types, supporting the hypothesis that they play distinct roles in the BA network operations upon pain information processing and fear memory formation.

2.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963833

RESUMEN

A key assumption in studies of cortical functions is that excitatory principal neurons, but not inhibitory cells express calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα) resulting in a widespread use of CaMKIIα promoter-driven protein expression for principal cell manipulation and monitoring their activities. Using neuroanatomical and electrophysiological methods we demonstrate that in addition to pyramidal neurons, multiple types of cortical GABAegic cells are targeted by adeno-associated viral vectors (AAV) driven by the CaMKIIα promoter in both male and female mice. We tested the AAV5 and AAV9 serotype of viruses with either Channelrhodopsin 2 (ChR2)-mCherry or Archaerhodopsin-T-green fluorescent protein (GFP) constructs, with different dilutions. We show that in all cases, the reporter proteins can visualize a large fraction of different interneuron types, including parvalbumin (PV), somatostatin (SST), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and cholecystokinin (CCK)-containing GABAergic cells, which altogether cover around 60% of the whole inhibitory cell population in cortical structures. Importantly, the expression of the excitatory opsin Channelrhodopsin 2 in the interneurons effectively drive spiking of infected GABAergic cells even if the immunodetectability of reporter proteins is ambiguous. Thus, our results challenge the use of CaMKIIα promoter-driven protein expression as a selective tool in targeting cortical glutamatergic neurons using viral vectors.


Asunto(s)
Interneuronas , Células Piramidales , Ratones , Masculino , Femenino , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células Piramidales/fisiología , Interneuronas/fisiología , Neuronas/metabolismo , Colecistoquinina/metabolismo , Parvalbúminas/metabolismo
3.
eNeuro ; 6(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636080

RESUMEN

There is growing evidence that interneurons (INs) orchestrate neural activity and plasticity in corticoamygdala circuits to regulate fear behaviors. However, defining the precise role of cholecystokinin-expressing INs (CCK INs) remains elusive due to the technical challenge of parsing this population from CCK-expressing principal neurons (CCK PNs). Here, we used an intersectional genetic strategy in CCK-Cre;Dlx5/6-Flpe double-transgenic mice to study the anatomical, molecular and electrophysiological properties of CCK INs in the basal amygdala (BA) and optogenetically manipulate these cells during fear extinction. Electrophysiological recordings confirmed that this strategy targeted GABAergic cells and that a significant proportion expressed functional cannabinoid CB1 receptors; a defining characteristic of CCK-expressing basket cells. However, immunostaining showed that subsets of the genetically-targeted cells expressed either neuropeptide Y (NPY; 29%) or parvalbumin (PV; 17%), but not somatostatin (SOM) or Ca2+/calmodulin-dependent protein kinase II (CaMKII)-α. Further morphological and electrophysiological analyses showed that four IN types could be identified among the EYFP-expressing cells: CCK/cannabinoid receptor type 1 (CB1R)-expressing basket cells, neurogliaform cells, PV+ basket cells, and PV+ axo-axonic cells. At the behavioral level, in vivo optogenetic photostimulation of the targeted population during extinction acquisition led to reduced freezing on a light-free extinction retrieval test, indicating extinction memory facilitation; whereas photosilencing was without effect. Conversely, non-selective (i.e., inclusive of INs and PNs) photostimulation or photosilencing of CCK-targeted cells, using CCK-Cre single-transgenic mice, impaired extinction. These data reveal an unexpectedly high degree of phenotypic complexity in a unique population of extinction-modulating BA INs.


Asunto(s)
Amígdala del Cerebelo/fisiología , Colecistoquinina/metabolismo , Extinción Psicológica/fisiología , Miedo/fisiología , Interneuronas/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Condicionamiento Clásico/fisiología , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Optogenética
4.
PLoS Biol ; 15(5): e2001421, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28542195

RESUMEN

Information processing in neural networks depends on the connectivity among excitatory and inhibitory neurons. The presence of parallel, distinctly controlled local circuits within a cortical network may ensure an effective and dynamic regulation of microcircuit function. By applying a combination of optogenetics, electrophysiological recordings, and high resolution microscopic techniques, we uncovered the organizing principles of synaptic communication between principal neurons and basket cells in the basal nucleus of the amygdala. In this cortical structure, known to be critical for emotional memory formation, we revealed the presence of 2 parallel basket cell networks expressing either parvalbumin or cholecystokinin. While the 2 basket cell types are mutually interconnected within their own category via synapses and gap junctions, they avoid innervating each other, but form synaptic contacts with axo-axonic cells. Importantly, both basket cell types have the similar potency to control principal neuron spiking, but they receive excitatory input from principal neurons with entirely diverse features. This distinct feedback synaptic excitation enables a markedly different recruitment of the 2 basket cell types upon the activation of local principal neurons. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in circuit operations in the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiología , Axones/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Reclutamiento Neurofisiológico , Amígdala del Cerebelo/citología , Animales , Biomarcadores/metabolismo , Mapeo Encefálico , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Femenino , Neuronas GABAérgicas/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Transgénicos , Red Nerviosa/citología , Proteínas del Tejido Nervioso/genética , Conducción Nerviosa , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual
5.
Front Cell Neurosci ; 11: 401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311832

RESUMEN

During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134)-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2)-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor) stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms) in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

6.
Eur J Neurosci ; 45(4): 548-558, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27977063

RESUMEN

The perisomatic region of principal neurons in cortical regions is innervated by three types of GABAergic interneuron, including parvalbumin-containing basket cells (PVBCs) and axo-axonic cells (AACs), as well as cholecystokinin and type 1 cannabinoid receptor-expressing basket cells (CCK/CB1BCs). These perisomatic inhibitory cell types can also be found in the basal nucleus of the amygdala, however, their output properties are largely unknown. Here, we performed whole-cell recordings in morphologically identified interneurons in slices prepared from transgenic mice, in which the GABAergic cells could be selectively targeted. Investigating the passive and active membrane properties of interneurons located within the basal amygdala revealed that the three interneuron types have distinct single-cell properties. For instance, the input resistance, spike rate, accommodation in discharge rate, or after-hyperpolarization width at the half maximal amplitude separated the three interneuron types. Furthermore, we performed paired recordings from interneurons and principal neurons to uncover the basic features of unitary inhibitory postsynaptic currents (uIPSCs). Although we found no difference in the magnitude of responses measured in the principal neurons, the uIPSCs originating from the distinct interneuron types differed in rise time, failure rate, latency, and short-term dynamics. Moreover, the asynchronous transmitter release induced by a train of action potentials was typical for the output synapses of CCK/CB1BCs. Our results suggest that, despite the similar uIPSC magnitudes originating from the three perisomatic inhibitory cell types, their distinct release properties together with the marked differences in their spiking characteristics may contribute to accomplish specific functions in amygdala network operation.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores , Interneuronas/fisiología , Potenciales de Acción , Amígdala del Cerebelo/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
J Neurosci ; 34(49): 16194-206, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25471561

RESUMEN

Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 µm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Complejo Nuclear Basolateral/ultraestructura , Femenino , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Masculino , Ratones , Terminales Presinápticos/fisiología , Sinapsis/ultraestructura
8.
Elife ; 3: e03104, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25061223

RESUMEN

Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8 weeks old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3- 10-week-old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function.


Asunto(s)
Potenciales de Acción/fisiología , Linaje de la Célula/fisiología , Giro Dentado/fisiología , Neuronas/fisiología , Animales , Senescencia Celular/fisiología , Giro Dentado/citología , Electrodos , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Memoria/fisiología , Neurogénesis , Plasticidad Neuronal/fisiología , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Técnicas Estereotáxicas , Sinapsis/fisiología
9.
J Neurosci ; 34(23): 7958-63, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899717

RESUMEN

CB1 cannabinoid receptors (CB1) are located at axon terminals and effectively control synaptic communication and thereby circuit operation widespread in the CNS. Although it is partially uncovered how CB1 activation leads to the reduction of synaptic excitation, the mechanisms of the decrease of GABA release upon activation of these cannabinoid receptors remain elusive. To determine the mechanisms underlying the suppression of synaptic transmission by CB1 at GABAergic synapses, we recorded unitary IPSCs (uIPSCs) at cholecystokinin-expressing interneuron-pyramidal cell connections and imaged presynaptic [Ca(2+)] transients in mouse hippocampal slices. Our results reveal a power function with an exponent of 2.2 between the amplitude of uIPSCs and intrabouton [Ca(2+)]. Altering CB1 function by either increasing endocannabinoid production or removing its tonic activity allowed us to demonstrate that CB1 controls GABA release by inhibiting Ca(2+) entry into presynaptic axon terminals via N-type (Cav2.2) Ca(2+) channels. These results provide evidence for modulation of intrabouton Ca(2+) influx into GABAergic axon terminals by CB1, leading to the effective suppression of synaptic inhibition.


Asunto(s)
Calcio/metabolismo , Terminales Presinápticos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Colecistoquinina/genética , Colecistoquinina/farmacología , Femenino , Hipocampo/citología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Piperidinas/farmacología , Terminales Presinápticos/efectos de los fármacos , Pirazoles/farmacología , Sinapsis/efectos de los fármacos , omega-Conotoxina GVIA/farmacología
10.
J Neurosci ; 33(17): 7285-98, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616537

RESUMEN

Group II metabotropic glutamate receptors (mGlu-IIs) modulate hippocampal information processing through several presynaptic actions. We describe a novel postsynaptic inhibitory mechanism mediated by the mGlu2 subtype that activates an inwardly rectifying potassium conductance in the dendrites of DG granule cells of rats and mice. Data from glutamate-uncaging experiments and simulations indicate that mGlu2-activated potassium conductance uniformly reduces the peak amplitude of synaptic inputs arriving in the distal two-thirds of dendrites, with only minor effects on proximal inputs. This unique shunting profile is consistent with a peak expression of the mGlu2-activated conductance at the transition between the proximal and middle third of the dendrites. Further simulations under various physiologically relevant conditions showed that when a shunting conductance was activated in the proximal third of a single dendrite, it effectively modulated input to this specific branch while leaving inputs in neighboring dendrites relatively unaffected. Therefore, the restricted expression of the mGlu2-activated potassium conductance in the proximal third of DG granule cell dendrites represents an optimal localization for achieving the opposing biophysical requirements for uniform yet selective modulation of individual dendritic branches.


Asunto(s)
Dendritas/metabolismo , Giro Dentado/metabolismo , Inhibición Neural/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Animales , Giro Dentado/citología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/deficiencia , Receptores de Glutamato Metabotrópico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA