Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(2): 631-637, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38323985

RESUMEN

Wireless communication technologies, particularly radio frequency (RF), have been widely explored for wearable electronics with secure and user-friendly information transmission. By exploiting the operational principle of chemically actuated resonant devices (CARDs) and the electrical response observed in chemiresistive materials, we propose a simple and hands-on alternative to design and manufacture RF tags that function as CARDs for wireless sensing of meat freshness. Specifically, the RF antennas were meticulously designed and fabricated by lithography onto a flexible substrate with conductive tape, and the RF signal was characterized in terms of amplitude and peak resonant frequency. Subsequently, a single-walled carbon nanotube (SWCNT)/MoS2/In2O3 chemiresistive composite was incorporated into the RF tag to convey it as CARDs. The RF signal was then utilized to establish a correlation between the sensor's electrical response and the RF attenuation signal (reflection coefficient) in the presence of volatile amines and seafood (shrimp) samples. The freshness of the seafood samples was systematically assessed throughout the storage time by utilizing the CARDs, thereby underscoring their effective potential for monitoring food quality. Specifically, the developed wireless tags provide cumulative amine exposure data within the food package, demonstrating a gradual decrease in radio frequency signals. This study illustrates the versatility of RF tags integrated with chemiresistors as a promising pathway toward scalable, affordable, and portable wireless chemical sensors.


Asunto(s)
Calidad de los Alimentos , Carne , Carne/análisis , Aminas
2.
Folia Microbiol (Praha) ; 69(2): 407-414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37979123

RESUMEN

Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.


Asunto(s)
Nanofibras , Nanofibras/química , Progesterona , Biotransformación
3.
ACS Sens ; 7(8): 2104-2131, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35914109

RESUMEN

The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring.


Asunto(s)
Nanotubos de Carbono , Materiales Inteligentes , Aminas Biogénicas , Calidad de los Alimentos , Inocuidad de los Alimentos
4.
Biosensors (Basel) ; 7(4)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244741

RESUMEN

The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.


Asunto(s)
Técnicas Biosensibles , Colorimetría/métodos , Metales Pesados/química , Nanofibras/química , Fluorescencia
5.
J Phys Chem A ; 118(31): 5769-78, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24547941

RESUMEN

This study is a framework proposal for understanding the antimicrobacterial effect of both α-Ag2WO4 microcrystals (AWO) synthesized using a microwave hydrothermal (MH) method and α-Ag2WO4 microcrystals with Ag metallic nanofilaments (AWO:Ag) obtained by irradiation employing an electron beam to combat against planktonic cells of methicillin-resistant Staphylococcus aureus (MRSA). These samples were characterized by X-ray diffraction (XRD), FT-Raman spectroscopy, ultraviolet visible (UV-vis) measurements, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). The results reveal that both AWO and AWO:Ag solutions have bacteriostatic and bactericidal effects, but the irradiated sample is more efficient; i.e., a 4-fold of the MRSA planktonic cells as compared to the nonirradiated sample was observed. In addition, first principles calculations were performed to obtain structural and electronic properties of AWO and metallic Ag, which provides strong quantitative support for an antimicrobacterial mechanism based on the enhancement of electron transfer processes between α-Ag2WO4 and Ag nanoparticles.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Compuestos de Plata/química , Simulación por Computador , Electrones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Químicos , Espectrometría Raman , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA