Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(9): 1452-1463, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37074084

RESUMEN

Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias de la Mama , Humanos , Femenino , Fosforilación , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Transducción de Señal , Tamoxifeno
2.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35163630

RESUMEN

The commensal bacterium Faecalibacterium prausnitzii has unique anti-inflammatory properties, at least some of which have been attributed to its production of MAM, the Microbial Anti-inflammatory Molecule. Previous phylogenetic studies of F. prausnitzii strains have revealed the existence of various phylogroups. In this work, we address the question of whether MAMs from different phylogroups display distinct anti-inflammatory properties. We first performed wide-scale identification, classification, and phylogenetic analysis of MAM-like proteins encoded in different genomes of F. prausnitzii. When combined with a gene context analysis, this approach distinguished at least 10 distinct clusters of MAMs, providing evidence for functional diversity within this protein. We then selected 11 MAMs from various clusters and evaluated their anti-inflammatory capacities in vitro. A wide range of anti-inflammatory activity was detected. MAM from the M21/2 strain had the highest inhibitory effect (96% inhibition), while MAM from reference strain A2-165 demonstrated only 56% inhibition, and MAM from strain CNCM4541 was almost inactive. These results were confirmed in vivo in murine models of acute and chronic colitis. This study provides insights into the family of MAM proteins and generates clues regarding the choice of F. prausnitzii strains as probiotics for use in targeting chronic inflammatory diseases.


Asunto(s)
Proteínas Bacterianas/genética , Faecalibacterium prausnitzii/metabolismo , Filogenia , Probióticos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/uso terapéutico , Secuencia de Bases , Colitis/tratamiento farmacológico , Faecalibacterium prausnitzii/genética , Variación Genética , Genoma Bacteriano , Masculino , Ratones , Análisis de Secuencia de ADN
3.
Cell Surf ; 7: 100060, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34485766

RESUMEN

Four serine/threonine kinases are present in all mycobacteria: PknA, PknB, PknG and PknL. PknA and PknB are essential for growth and replication, PknG regulates metabolism, but little is known about PknL. Inactivation of pknL and adjacent regulator MSMEG_4242 in rough colony M. smegmatis mc2155 produced both smooth and rough colonies. Upon restreaking rough colonies, smooth colonies appeared at a frequency of ~ 1/250. Smooth mutants did not form biofilms, showed increased sliding motility and anomalous lipids on thin-layer chromatography, identified by mass spectrometry as lipooligosaccharides and perhaps also glycopeptidolipids. RNA-seq and Sanger sequencing revealed that all smooth mutants had inactivated lsr2 genes due to mutations and different IS1096 insertions. When complemented with lsr2, the colonies became rough, anomalous lipids disappeared and sliding motility decreased. Smooth mutants showed increased expression of IS1096 transposase TnpA and MSMEG_4727, which encodes a protein similar to PKS5. When MSMEG_4727 was deleted, smooth pknL/MSMEG_4242/lsr2 mutants reverted to rough, formed good biofilms, their motility decreased slightly and their anomalous lipids disappeared. Rough delpknL/del4242 mutants formed poor biofilms and showed decreased, aberrant sliding motility and both phenotypes were complemented with the two deleted genes. Inactivation of lsr2 changes colony morphology from rough to smooth, augments sliding motility and increases expression of MSMEG_4727 and other enzymes synthesizing lipooligosaccharides, apparently preventing biofilm formation. Similar morphological phase changes occur in other mycobacteria, likely reflecting environmental adaptations. PknL and MSMEG_4242 regulate lipid components of the outer cell envelope and their absence selects for lsr2 inactivation. A regulatory, phosphorylation cascade model is proposed.

4.
Toxins (Basel) ; 12(9)2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937845

RESUMEN

The emergence of B. cereus as an opportunistic food-borne pathogen has intensified the need to distinguish strains of public health concern. The heterogeneity of the diseases associated with B. cereus infections emphasizes the versatility of these bacteria strains to colonize their host. Nevertheless, the molecular basis of these differences remains unclear. Several toxins are involved in virulence, particularly in gastrointestinal disorders, but there are currently no biological markers able to differentiate pathogenic from harmless strains. We have previously shown that CwpFM is a cell wall peptidase involved in B. cereus virulence. Here, we report a sequence/structure/function characterization of 39 CwpFM sequences, chosen from a collection of B. cereus with diverse virulence phenotypes, from harmless to highly pathogenic strains. CwpFM is homology-modeled in silico as an exported papain-like endopeptidase, with an N-terminal end composed of three successive bacterial Src Homology 3 domains (SH3b1-3) likely to control protein-protein interactions in signaling pathways, and a C-terminal end that contains a catalytic NLPC_P60 domain primed to form a competent active site. We confirmed in vitro that CwpFM is an endopeptidase with a moderate peptidoglycan hydrolase activity. Remarkably, CwpFMs from pathogenic strains harbor a specific stretch of twenty residues intrinsically disordered, inserted between the SH3b3 and the catalytic NLPC_P60 domain. This strongly suggests this linker as a marker of differentiation between B. cereus strains. We believe that our findings improve our understanding of the pathogenicity of B. cereus while advancing both clinical diagnosis and food safety.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Bacillus cereus/genética , Bacillus cereus/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/genética , Endopeptidasas/química , Endopeptidasas/genética , Hidrólisis , Simulación del Acoplamiento Molecular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Virulencia
5.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32680867

RESUMEN

Lactobacillus sakei is a nonpathogenic lactic acid bacterium and a natural inhabitant of meat ecosystems. Although red meat is a heme-rich environment, L. sakei does not need iron or heme for growth, although it possesses a heme-dependent catalase. Iron incorporation into L. sakei from myoglobin and hemoglobin was previously shown by microscopy and the L. sakei genome reveals the complete equipment for iron and heme transport. Here, we report the characterization of a five-gene cluster (from lsa1836 to lsa1840 [lsa1836-1840]) encoding a putative metal iron ABC transporter. Interestingly, this cluster, together with a heme-dependent catalase gene, is also conserved in other species from the meat ecosystem. Our bioinformatic analyses revealed that the locus might correspond to a complete machinery of an energy coupling factor (ECF) transport system. We quantified in vitro the intracellular heme in the wild type (WT) and in our Δlsa1836-1840 deletion mutant using an intracellular heme sensor and inductively coupled plasma mass spectrometry for quantifying incorporated 57Fe heme. We showed that in the WT L. sakei, heme accumulation occurs rapidly and massively in the presence of hemin, while the deletion mutant was impaired in heme uptake; this ability was restored by in trans complementation. Our results establish the main role of the L. sakei Lsa1836-1840 ECF-like system in heme uptake. Therefore, this research outcome sheds new light on other possible functions of ECF-like systems.IMPORTANCELactobacillus sakei is a nonpathogenic bacterial species exhibiting high fitness in heme-rich environments such as meat products, although it does not need iron or heme for growth. Heme capture and utilization capacities are often associated with pathogenic species and are considered virulence-associated factors in the infected hosts. For these reasons, iron acquisition systems have been deeply studied in such species, while for nonpathogenic bacteria the information is scarce. Genomic data revealed that several putative iron transporters are present in the genome of the lactic acid bacterium L. sakei In this study, we demonstrate that one of them is an ECF-like ABC transporter with a functional role in heme transport. Such evidence has not yet been brought for an ECF; therefore, our study reveals a new class of heme transport system.


Asunto(s)
Genes Bacterianos/genética , Hemo/metabolismo , Latilactobacillus sakei/genética , Familia de Multigenes/genética , Transporte Biológico/genética , Latilactobacillus sakei/metabolismo
6.
Microbiology (Reading) ; 166(4): 398-410, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067627

RESUMEN

The transcriptional regulator PlcR, its cognate cell-cell signaling heptapeptide PapR7, and the oligopeptide permease OppABCDF, required for PapR7 import, form a quorum-sensing system that controls the expression of virulence factors in Bacillus cereus and Bacillus thuringiensis species. In B. cereus strain ATCC 14579, the transcriptional regulator PlcRa activates the expression of abrB2 gene, which encodes an AbrB-like transcriptional regulator involved in cysteine biosynthesis. PlcRa is a structural homolog of PlcR: in particular, its C-terminal TPR peptide-binding domain could be similarly arranged as in PlcR. The signaling peptide of PlcRa is not known. As PlcRa is a PlcR-like protein, the cognate PapR7 peptide (ADLPFEF) is a relevant candidate to act as a signaling peptide for PlcRa activation. Also, the putative PapRa7 peptide (CSIPYEY), encoded by the papRa gene adjacent to the plcRa gene, is a relevant candidate as addition of synthetic PapRa7 induces a dose-dependent increase of abrB2 expression. To address the issue of peptide selectivity of PlcRa, the role of PapR and PapRa peptides in PlcRa activity was investigated in B. thuringiensis 407 strain, by genetic and functional complementation analyses. A transcriptional fusion between the promoter of abrB2 and lacZ was used to monitor the PlcRa activity in various genetic backgrounds. We demonstrated that PapR was necessary and sufficient for PlcRa activity. We showed that synthetic PapRs from pherogroups II, III and IV and synthetic PapRa7 were able to trigger abrB2 expression, suggesting that PlcRa is less selective than PlcR. Lastly, the mode of binding of PlcRa was addressed using an in silico approach. Overall, we report a new role for PapR as a signaling peptide for PlcRa activity and show a functional link between PlcR and PlcRa regulons in B. thuringiensis.


Asunto(s)
Bacillus thuringiensis/fisiología , Señales de Clasificación de Proteína/fisiología , Percepción de Quorum , Transactivadores/metabolismo , Secuencia de Aminoácidos , Bacillus thuringiensis/genética , Bacillus thuringiensis/crecimiento & desarrollo , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Front Microbiol ; 10: 1329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275266

RESUMEN

Protein phosphorylation especially on serine/threonine/tyrosine residues are frequent in many bacteria. This post-translational modification has been associated with pathogenicity and virulence in various species. However, only few data have been produced so far on generally recognized as safe bacteria used in food fermentations. A family of kinases known as Hanks-type kinases is suspected to be responsible for, at least, a part of these phosphorylations in eukaryotes as in bacteria. The objective of our work was to establish the first phosphoproteome of Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentations in order to identified the proteins and pathways tagged by Ser/Thr/Tyr phosphorylations. In addition, we have evaluated the role in this process of the only Hanks-type kinase encoded in the S. thermophilus genome. We have constructed a mutant defective for the Hanks type kinase in S. thermophilus and established the proteomes and phosphoproteomes of the wild type and the mutant strains. To do that, we have enriched our samples in phosphopeptides with titane beads and used dimethyl tags to compare phosphopeptide abundances. Peptides and phosphopeptides were analyzed on a last generation LC-MS/MS system. We have identified and quantified 891 proteins representing half of the theoretical proteome. Among these proteins, 106 contained phosphorylated peptides. Various functional groups of proteins (amino acid, carbon and nucleotide metabolism, translation, cell cycle, stress response, …) were found phosphorylated. The phosphoproteome was only weakly reduced in the Hanks-type kinase mutant indicating that this enzyme is only one of the players in the phosphorylation process. The proteins that are modified by the Hanks-type kinase mainly belong to the divisome.

8.
Sci Signal ; 12(580)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064884

RESUMEN

Forkhead-associated (FHA) domains are modules that bind to phosphothreonine (pThr) residues in signaling cascades. The FHA-containing mycobacterial protein GarA is a central element of a phosphorylation-dependent signaling pathway that redirects metabolic flux in response to amino acid starvation or cell growth requirements. GarA acts as a phosphorylation-dependent ON/OFF molecular switch. In its nonphosphorylated ON state, the GarA FHA domain engages in phosphorylation-independent interactions with various metabolic enzymes that orchestrate nitrogen flow, such as 2-oxoglutarate decarboxylase (KGD). However, phosphorylation at the GarA N-terminal region by the protein kinase PknB or PknG triggers autoinhibition through the intramolecular association of the N-terminal domain with the FHA domain, thus blocking all downstream interactions. To investigate these different FHA binding modes, we solved the crystal structures of the mycobacterial upstream (phosphorylation-dependent) complex PknB-GarA and the downstream (phosphorylation-independent) complex GarA-KGD. Our results show that the phosphorylated activation loop of PknB serves as a docking site to recruit GarA through canonical FHA-pThr interactions. However, the same GarA FHA-binding pocket targets an allosteric site on nonphosphorylated KGD, where a key element of recognition is a phosphomimetic aspartate. Further enzymatic and mutagenesis studies revealed that GarA acted as a dynamic allosteric inhibitor of KGD by preventing crucial motions in KGD that are necessary for catalysis. Our results provide evidence for physiological phosphomimetics, supporting numerous mutagenesis studies using such approaches, and illustrate how evolution can shape a single FHA-binding pocket to specifically interact with multiple phosphorylated and nonphosphorylated protein partners.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Mycobacterium tuberculosis/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína
9.
Nucleic Acids Res ; 47(7): 3795-3810, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30788511

RESUMEN

Upon triggering by their inducer, signal transduction ATPases with numerous domains (STANDs), initially in monomeric resting forms, multimerize into large hubs that activate target macromolecules. This process requires conversion of the STAND conserved core (the NOD) from a closed form encasing an ADP molecule to an ATP-bound open form prone to multimerize. In the absence of inducer, autoinhibitory interactions maintain the NOD closed. In particular, in resting STAND proteins with an LRR- or WD40-type sensor domain, the latter establishes interactions with the NOD that are disrupted in the multimerization-competent forms. Here, we solved the first crystal structure of a STAND with a tetratricopeptide repeat sensor domain, PH0952 from Pyrococcus horikoshii, revealing analogous NOD-sensor contacts. We use this structural information to experimentally demonstrate that similar interactions also exist in a PH0952 homolog, the MalT STAND archetype, and actually contribute to the MalT autoinhibition in vitro and in vivo. We propose that STAND activation occurs by stepwise release of autoinhibitory contacts coupled to the unmasking of inducer-binding determinants. The MalT example suggests that STAND weak autoinhibitory interactions could assist the binding of inhibitory proteins by placing in register inhibitor recognition elements born by two domains.


Asunto(s)
Adenosina Trifosfatasas/química , Conformación Proteica , Dominios Proteicos/genética , Repeticiones de Tetratricopéptidos/genética , Adenosina Trifosfatasas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína/genética , Transducción de Señal/genética , Repeticiones WD40/genética
10.
Sci Rep ; 9(1): 94, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643170

RESUMEN

The synaptic protein SHANK3 encodes a multidomain scaffold protein expressed at the postsynaptic density of neuronal excitatory synapses. We previously identified de novo SHANK3 mutations in patients with autism spectrum disorders (ASD) and showed that SHANK3 represents one of the major genes for ASD. Here, we analyzed the pyramidal cortical neurons derived from induced pluripotent stem cells from four patients with ASD carrying SHANK3 de novo truncating mutations. At 40-45 days after the differentiation of neural stem cells, dendritic spines from pyramidal neurons presented variable morphologies: filopodia, thin, stubby and muschroom, as measured in 3D using GFP labeling and immunofluorescence. As compared to three controls, we observed a significant decrease in SHANK3 mRNA levels (less than 50% of controls) in correlation with a significant reduction in dendritic spine densities and whole spine and spine head volumes. These results, obtained through the analysis of de novo SHANK3 mutations in the patients' genomic background, provide further support for the presence of synaptic abnormalities in a subset of patients with ASD.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Mutación , Proteínas del Tejido Nervioso/genética , Células Piramidales/citología , Células Piramidales/patología , Diferenciación Celular , Dendritas/patología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Fluorescente , Proteínas del Tejido Nervioso/deficiencia , Eliminación de Secuencia
11.
J Mol Biol ; 429(18): 2816-2824, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754374

RESUMEN

Viral tyrosine phosphatases such as VH1 from Vaccinia and Variola virus are recognized as important effectors of host-pathogen interactions. While proteins sharing sequence to VH1 have been identified in other viruses, their structural and functional characterization is not known. In this work, we determined the crystal structure of the VH1 homolog in the Orf virus, herein named OH1. Similarly to Variola and Vaccinia VH1, the structure of OH1 shows a dimer with the typical dual-specificity phosphatase fold. In contrast to VH1, the OH1 dimer is covalently stabilized by a disulfide bond involving residue Cys15 in the N-terminal helix alpha-1 of both monomers, and Cys15 is a conserved residue within the Parapoxvirus genus. The in vitro functional characterization confirms that OH1 is a dual-specificity phosphatase and reveals its ability to dephosphorylate phosphatidylinositol 3,5-bisphosphate, a new activity potentially relevant in phosphoinositide recycling during virion maturation.


Asunto(s)
Virus del Orf/enzimología , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Cristalografía por Rayos X , Disulfuros/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Especificidad por Sustrato
12.
J Biol Chem ; 291(43): 22793-22805, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27590338

RESUMEN

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Sintasas Poliquetidas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Ligasas/genética , Mutación Missense , Mycobacterium tuberculosis/genética , Fosforilación/fisiología , Sintasas Poliquetidas/genética
13.
Biochem J ; 473(7): 887-98, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26795039

RESUMEN

Galectins (Gals) constitute a family of mammalian lectins with affinity for ß-galactosides, characterized by the presence of conserved CRDs (carbohydrate-recognition domains). We have found previously that Gal-8, from the tandem-repeat group with two linked CRDs, exerts two separate actions on CD4(+)T-cells: antigen-independent proliferation and, at lower concentration, antigen-specific co-stimulation. Whereas proliferation can be ascribed to the pro-inflammatory role of Gal-8, the co-stimulatory activity of borderline T-cell-specific responses allows the proposal of Gal-8 as an adjuvant in vaccination. To study the relevance of glycan-lectin interaction to these T-cell activities, we generated a double-mutated protein (Gal-8mut) by replacing canonical arginine residues on each CRD, so as to abolish sugar-binding capacity. As expected, Gal-8mut was unable to bind to lactosyl-Sepharose, confirming that lactose recognition was precluded; however, preservation of lectin activity was still evident since Gal-8mut displayed haemoagglutinatory effects and binding capacity to the T-cell surface. To search for glycan affinity, a glycan microarray analysis was conducted which revealed that Gal-8mut lost most low- and intermediate-, but retained high-, affinity interactions, mainly to polylactosamines and blood group antigens. These findings were supported further by molecular modelling. Regarding biological activity, Gal-8mut was unable to induce T-cell proliferation, but efficiently co-stimulated antigen-specific responses, bothin vitroandin vivo.Therefore Gal-8mut represents a useful tool to dissect the specificities of lectin-glycan interactions underlying distinctive Gal-8 activities on T-cell biology. Moreover, given its distinguishing properties, Gal-8mut could be used to enhance borderline immune responses without the non-specific pro-inflammatory activity or other potential adverse effects.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Galectinas/inmunología , Mutación Missense , Sustitución de Aminoácidos , Animales , Galectinas/genética , Ratones , Ratones Transgénicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
14.
J Cell Sci ; 128(17): 3250-62, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26208633

RESUMEN

Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε-CD13 interaction could be a new therapeutic target in osteoarthritis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Antígenos CD13/metabolismo , Cartílago/metabolismo , Condrocitos/metabolismo , Osteoartritis/metabolismo , Proteínas 14-3-3/genética , Animales , Antígenos CD13/genética , Cartílago/patología , Condrocitos/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Osteoartritis/genética , Osteoartritis/patología
15.
Biochemistry ; 54(25): 3890-900, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26029980

RESUMEN

Among hormone-inducible transcription factors, estrogen receptors (ERs) play important roles in tissue growth and differentiation, via either direct or indirect binding, in the nucleus, to specific DNA targets called estrogen responsive elements (EREs), or through nongenomic pathways. In humans, two estrogen receptor isoforms (hERs), designated hERα and hERß, have been identified. These two hERs, encoded by genes located on distinct chromosomes, exhibit divergent tissue-specific functions and different subcellular distributions depending on their binding status, free or complexed to their cognate ligands. Because it is hypothesized that such distinct behaviors may arise from various conformational stabilities and flexibilities, the effect of salt concentration and temperature was studied on the free and estrogen-activated hERα and hERß. Our results show that the conformational stability of hERß is weakly modulated by salt concentration as opposed to hERα. In addition, we show that the estrogen-bound hERs exhibit a more constrained structure than the unliganded ones and that their conformational flexibility is more affected by diethylstilbestrol binding than that of estradiol, 4-hydroxytamoxifen, or raloxifen. In line with these results, conformational analysis and computational docking were performed on hERα and hERß, which confer molecular support of a diethylstilbestrol-induced restrained flexibility as compared to other ligands. We found that Trp383 in hERα and Trp335 in hERß can closely interact with the NR-box motif of the H12 helix and act as a gatekeeper of the agonist-bound versus antagonist-bound conformations. Altogether, our study contributes to an improved knowledge of the diverse physicochemical properties of full-length hERs, which will help in our understanding of their distinct cellular roles in various cellular contexts.


Asunto(s)
Receptor alfa de Estrógeno/química , Receptor beta de Estrógeno/química , Secuencias de Aminoácidos , Sitios de Unión , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/química , Estrógenos/metabolismo , Calor , Humanos , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Receptores de Estrógenos
16.
Biochim Biophys Acta ; 1850(9): 1930-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093289

RESUMEN

BACKGROUND: Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS: Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS: IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS: For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE: An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.


Asunto(s)
Bacillus cereus/química , Proteínas Bacterianas/química , Hemo/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hemina/metabolismo , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Termodinámica
17.
Structure ; 23(6): 1039-48, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25960409

RESUMEN

Tuberculosis remains one of the world's deadliest human diseases, with a high prevalence of antibiotic-resistant Mycobacterium tuberculosis (Mtb) strains. A molecular understanding of processes underlying regulation and adaptation of bacterial physiology may provide novel avenues for the development of antibiotics with unconventional modes of action. Here, we focus on the multidomain S/T protein kinase PknG, a soluble enzyme that controls central metabolism in Actinobacteria and has been linked to Mtb infectivity. Our biochemical and structural studies reveal how different motifs and domains flanking the catalytic core regulate substrate selectivity without significantly affecting the intrinsic kinase activity, whereas a rubredoxin-like domain is shown to downregulate catalysis through specific intramolecular interactions that modulate access to a profound substrate-binding site. Our findings provide the basis for the selective and specific inhibition of PknG, and open new questions about regulation of related bacterial and eukaryotic protein kinases.


Asunto(s)
Proteínas Bacterianas/química , Regulación Enzimológica de la Expresión Génica/genética , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Proteínas Serina-Treonina Quinasas/química , Clonación Molecular , Cristalización , Mutagénesis , Fosforilación , Estructura Terciaria de Proteína , Rubredoxinas/química , Rubredoxinas/metabolismo , Especificidad por Sustrato
18.
J Struct Biol ; 188(2): 156-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25260828

RESUMEN

Among the few proteins shown to be secreted by the Tat system in Mycobacterium tuberculosis, Rv2525c is of particular interest, since its gene is conserved in the minimal genome of Mycobacterium leprae. Previous evidence linked this protein to cell wall metabolism and sensitivity to ß-lactams. We describe here the crystal structure of Rv2525c that shows a TIM barrel-like fold characteristic of glycoside hydrolases of the GH25 family, which includes prokaryotic and phage-encoded peptidoglycan hydrolases. Structural comparison with other members of this family combined with substrate docking suggest that, although the 'neighbouring group' catalytic mechanism proposed for this family still appears as the most plausible, the identity of residues involved in catalysis in GH25 hydrolases might need to be revised.


Asunto(s)
Proteínas Bacterianas/metabolismo , Productos del Gen tat/metabolismo , Mycobacterium tuberculosis/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Pared Celular/metabolismo , Cristalografía por Rayos X/métodos , Datos de Secuencia Molecular , Alineación de Secuencia
19.
PLoS Pathog ; 9(10): e1003678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098125

RESUMEN

Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Antivirales/farmacología , Virus Chikungunya/metabolismo , Inmunidad Innata/efectos de los fármacos , Pirimidinas/biosíntesis , Infecciones por Alphavirus/tratamiento farmacológico , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/inmunología , Animales , Antivirales/química , Fiebre Chikungunya , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Chlorocebus aethiops , Células HeLa , Humanos , Inmunidad Innata/inmunología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 1 Regulador del Interferón/metabolismo , Pirimidinas/inmunología , Células Vero
20.
Biol Open ; 2(3): 324-34, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23519440

RESUMEN

The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4-6. We quantified their effects on the length and branching of neurites. Contactin 4-6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4-6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...