Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 29: 124-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26608021

RESUMEN

Several studies have demonstrated that overnutrition during early postnatal period can increase the long-term risk of developing obesity and cardiac disorders, yet the short-term effects of postnatal overfeeding in cardiac metabolism remains unknown. The aim of our study was to investigate the cardiac metabolism of weaned mice submitted to overnutrition during lactation, particularly as to mitochondrial function, substrate preference and insulin signaling. Postnatal overfeeding was induced by litter size reduction in mice at postnatal day 3. At 21 days of age (weaning), mice in the overfed group (OG) presented biometric and biochemical parameters of obesity, including increased body weight, visceral fat, liver weight and increased left ventricle weight/tibia length ratio; indicating cardiac hypertrophy, hyperglycemia, hyperinsulinemia and increased liver glycogen content compared to control group. In the heart, we detected impaired insulin signaling, mainly due to decreased IRß, pTyr-IRS1, PI3K, GLUT4 and pAkt/Akt and increased PTP1B, GLUT1 and pAMPKα/AMPKα content. Activities of lactate dehydrogenase and citrate synthase were increased, accompanied by enhanced carbohydrate oxidation, as observed by high-resolution respirometry. Moreover, OG hearts had lower CPT1, PPARα and increased UCP2 mRNA expression, associated with increased oxidative stress (4-HNE content), BAX/BCL2 ratio and cardiac fibrosis. Ultrastructural analysis of OG hearts demonstrated mild mitochondrial damage without alterations in OXPHOS complexes. In conclusion, overnutrition during early life induces short-term metabolic disturbances, impairment in heart insulin signaling, up-regulates GLUT-1 and switch cardiac fuel preference in juvenile mice.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Transportador de Glucosa de Tipo 1/metabolismo , Insulina/metabolismo , Lactancia , Mitocondrias Cardíacas/metabolismo , Hipernutrición , Transducción de Señal , Regulación hacia Arriba , Animales , Ratones , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA