Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2321438121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687782

RESUMEN

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , Núcleo Celular , Edición Génica , Terapia Genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Edición Génica/métodos , Animales , Ratones , Músculo Esquelético/metabolismo , Núcleo Celular/metabolismo , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Humanos , Señales de Localización Nuclear/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Modelos Animales de Enfermedad , Mioblastos/metabolismo
2.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986992

RESUMEN

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader", a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.

3.
Mol Neurobiol ; 60(8): 4811-4827, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37171575

RESUMEN

We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aß, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aß42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Ácido Aspártico Endopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Aprendizaje por Laberinto , Modelos Animales de Enfermedad
4.
Nat Commun ; 13(1): 6286, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271076

RESUMEN

A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Sistemas CRISPR-Cas , Neuronas Motoras/metabolismo , Dipéptidos/metabolismo , ARN/metabolismo
5.
Brain Sci ; 11(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827542

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport "biosensors", composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype-persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects-resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.

6.
Addict Biol ; 26(1): e12816, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373129

RESUMEN

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Asunto(s)
Alcoholismo/genética , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Células Cultivadas , Epigénesis Genética , Etanol/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Corteza Prefrontal/metabolismo , Ratas , Transducción de Señal , Regulación hacia Arriba
7.
J Neurochem ; 157(6): 1759-1773, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219848

RESUMEN

Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/metabolismo , Desmetilación del ADN/efectos de los fármacos , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Animales , Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/tratamiento farmacológico , Deficiencia de Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/metabolismo , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/genética , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Ratas Endogámicas F344 , Células de Schwann/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/genética , Neuropatía Ciática/metabolismo
8.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160998

RESUMEN

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Asunto(s)
Diferenciación Celular , Cuerpos Embrioides/citología , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Madre Pluripotentes Inducidas/citología , Meiosis , Células Cultivadas , Cuerpos Embrioides/metabolismo , Femenino , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/metabolismo , RNA-Seq
9.
Mol Neurodegener ; 15(1): 13, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093728

RESUMEN

BACKGROUND: The C9ORF72 hexanucleotide repeat expansion is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal age-related neurodegenerative diseases. The C9ORF72 expansion encodes five dipeptide repeat proteins (DPRs) that are produced through a non-canonical translation mechanism. Among the DPRs, proline-arginine (PR), glycine-arginine (GR), and glycine-alanine (GA) are the most neurotoxic and increase the frequency of DNA double strand breaks (DSBs). While the accumulation of these genotoxic lesions is increasingly recognized as a feature of disease, the mechanism(s) of DPR-mediated DNA damage are ill-defined and the effect of DPRs on the efficiency of each DNA DSB repair pathways has not been previously evaluated. METHODS AND RESULTS: Using DNA DSB repair assays, we evaluated the efficiency of specific repair pathways, and found that PR, GR and GA decrease the efficiency of non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ), but not homologous recombination (HR). We found that PR inhibits DNA DSB repair, in part, by binding to the nucleolar protein nucleophosmin (NPM1). Depletion of NPM1 inhibited NHEJ and SSA, suggesting that NPM1 loss-of-function in PR expressing cells leads to impediments of both non-homologous and homology-directed DNA DSB repair pathways. By deleting NPM1 sub-cellular localization signals, we found that PR binds NPM1 regardless of the cellular compartment to which NPM1 was directed. Deletion of the NPM1 acidic loop motif, known to engage other arginine-rich proteins, abrogated PR and NPM1 binding. Using confocal and super-resolution immunofluorescence microscopy, we found that levels of RAD52, a component of the SSA repair machinery, were significantly increased iPSC neurons relative to isogenic controls in which the C9ORF72 expansion had been deleted using CRISPR/Cas9 genome editing. Western analysis of post-mortem brain tissues confirmed that RAD52 immunoreactivity is significantly increased in C9ALS/FTD samples as compared to controls. CONCLUSIONS: Collectively, we characterized the inhibitory effects of DPRs on key DNA DSB repair pathways, identified NPM1 as a facilitator of DNA repair that is inhibited by PR, and revealed deficits in homology-directed DNA DSB repair pathways as a novel feature of C9ORF72-related disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Demencia Frontotemporal/genética , Proteínas Nucleares/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Línea Celular , Expansión de las Repeticiones de ADN/genética , Dipéptidos , Demencia Frontotemporal/metabolismo , Humanos , Nucleofosmina
11.
Nat Genet ; 51(4): 649-658, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30926972

RESUMEN

Late-onset ataxia is common, often idiopathic, and can result from cerebellar, proprioceptive, or vestibular impairment; when in combination, it is also termed cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We used non-parametric linkage analysis and genome sequencing to identify a biallelic intronic AAGGG repeat expansion in the replication factor C subunit 1 (RFC1) gene as the cause of familial CANVAS and a frequent cause of late-onset ataxia, particularly if sensory neuronopathy and bilateral vestibular areflexia coexist. The expansion, which occurs in the poly(A) tail of an AluSx3 element and differs in both size and nucleotide sequence from the reference (AAAAG)11 allele, does not affect RFC1 expression in patient peripheral and brain tissue, suggesting no overt loss of function. These data, along with an expansion carrier frequency of 0.7% in Europeans, implies that biallelic AAGGG expansion in RFC1 is a frequent cause of late-onset ataxia.


Asunto(s)
Ataxia/genética , Intrones/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteína de Replicación C/genética , Adulto , Anciano , Alelos , Ataxia Cerebelosa/genética , Humanos , Masculino , Persona de Mediana Edad , Secuenciación Completa del Genoma/métodos
12.
J Neurosci ; 39(4): 612-626, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30504275

RESUMEN

Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Inhibidores de Histona Desacetilasas/farmacología , Memoria/efectos de los fármacos , Acrilamidas/farmacología , Animales , Azepinas/farmacología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Fenilendiaminas/farmacología , Ratas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Triazoles/farmacología , Vorinostat/farmacología
13.
Neurobiol Dis ; 119: 149-158, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30099093

RESUMEN

BACKGROUND: With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132). METHODS: Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively. RESULTS: Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes. CONCLUSIONS: EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.


Asunto(s)
Antipsicóticos/uso terapéutico , Epigénesis Genética/fisiología , Motivación/fisiología , Complejo Represivo Polycomb 2/biosíntesis , Esquizofrenia/metabolismo , Conducta Social , Adulto , Anciano , Animales , Antipsicóticos/farmacología , Línea Celular Tumoral , Estudios de Cohortes , Epigénesis Genética/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Motivación/efectos de los fármacos , Complejo Represivo Polycomb 2/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
14.
Mol Cell Neurosci ; 85: 183-189, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29055697

RESUMEN

Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Andamiaje Homer/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , ARN sin Sentido/biosíntesis , Animales , Regulación de la Expresión Génica/genética , Proteínas de Andamiaje Homer/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN sin Sentido/efectos de los fármacos
15.
Mol Neurodegener ; 12(1): 46, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606110

RESUMEN

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive neurodegenerative disorder with identified genetic causes representing a significant minority of all cases. A GGGGCC hexanucleotide repeat expansion (HRE) mutation within the C9ORF72 gene has recently been identified as the most frequent known cause of ALS. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins (DPRs) are still produced in sufficient quantities to confer neurotoxicity. The levels of these toxic HRE products positively correlate with cellular toxicity and phenotypic severity across multiple disease models. Moreover, the degree of epigenetic repression inversely correlates with some facets of clinical presentation in C9-ALS patients. Recently, bacterial artificial chromosomes (BAC) have been used to generate transgenic mice that harbor the HRE mutation, complementing other relevant model systems such as patient-derived induced pluripotent stem cells (iPSCs). While epigenetic features of the HRE have been investigated in various model systems and post-mortem tissues, epigenetic dysregulation at the expanded locus in C9-BAC mice remains unexplored. METHODS AND RESULTS: Here, we sought to determine whether clinically relevant epigenetic perturbations caused by the HRE are mirrored in a C9-BAC mouse model. We used complementary DNA methylation assessment and immunoprecipitation methods to demonstrate that epigenetic aberrations caused by the HRE, such as DNA and histone methylation, are recapitulated in the C9-BAC mice. Strikingly, we found that cytosine hypermethylation within the promoter region of the human transgene occurred in a subset of C9-BAC mice similar to what is observed in patient populations. Moreover, we show that partial heterochromatinization of the C9 HRE occurs during the first weeks of the mouse lifespan, indicating age-dependent epigenetic repression. Using iPSC neurons, we found that preventing R-loop formation did not impede heterochromatinization of the HRE. CONCLUSIONS: Taken together, these observations provide further insight into mechanism and developmental time-course of epigenetic perturbations conferred by the C9ORF72 HRE. Finally, we suggest that epigenetic repression of the C9ORF72 HRE and nearby gene promoter could impede or delay motor neuron degeneration in C9-BAC mouse models of ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Metilación de ADN/genética , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas/metabolismo
16.
Hum Mol Genet ; 25(22): 4870-4880, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173181

RESUMEN

Fragile X syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Full mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS . In contrast, smaller pre-mutations of 55­200 CGG are associated with FMR1 overexpression and Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative condition. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, 5hmC sensitive restriction digest and ten-eleven translocation-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. This FMR1 5hmC enrichment was not present in cellular models of FXS including fibroblasts, lymphocytes and reprogrammed neurons, indicating they do not fully recapitulate this epigenetic feature of disease. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity.


Asunto(s)
Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , 5-Metilcitosina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neuronas/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...