Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 11(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35741947

RESUMEN

The present study investigated the mathematical modeling foam-mat drying kinetics of cumbeba pulp and the effect of drying conditions on the color and contents of ascorbic acid, flavonoids, and phenolic compounds of the powder pulps obtained. Foam-mat drying was carried out in a forced air circulation oven at temperatures of 50, 60, and 70 °C, testing foam-mat thicknesses of 0.5, 1.0, and 1.5 cm. The increase in the water removal rate is a result of the increase in air temperature and the decrease in the thickness of the foam layer. Among the empirical and semi-empirical mathematical models, the Midilli model was the one that best represented the drying curves in all conditions evaluated. Effective water diffusivity ranged from 1.037 × 10-9 to 6.103 × 10-9 m2 s-1, with activation energy of 25.212, 33.397, and 36.609 kJ mol-1 for foam thicknesses of 0.5, 1.0, and 1.5 cm, respectively. Cumbeba powders showed light orangish colors and, as the drying temperature increased from 50 to 70 °C, for all thicknesses, the lightness value (L*) decreased and the values of redness (+a*) and yellowness (+b*) increased. Foam-mat drying at higher temperatures (60 and 70 °C) improved the retention of ascorbic acid and flavonoids, but reduced the content of phenolic compounds, while the increase in thickness, especially for flavonoids and phenolic compounds, caused reduction in their contents. The foam-mat drying method allowed obtaining a good-quality cumbeba pulp powder.

2.
Foods ; 10(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917616

RESUMEN

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10-6 m2/s, 2.9285 to 12.754 × 10-9 m2/s and 1.5393 × 10-8 to 12.4270 × 10-6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50-80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...