Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1212551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022583

RESUMEN

Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the elderly. An altered skin microbiota in BP was recently revealed. Accumulating evidence points toward a link between the gut microbiota and skin diseases; however, the gut microbiota composition of BP patients remains largely underexplored, with only one pilot study to date, with a very limited sample size and no functional profiling of gut microbiota. To thoroughly investigate the composition and function of the gut microbiota in BP patients, and explore possible links between skin conditions and gut microbiota, we here investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering from BP and 66 age-, sex-, and study center-matched controls (CL) with non-inflammatory skin diseases (132 total participants), using 16S rRNA gene and shotgun sequencing data. Decreased alpha-diversity and an overall altered gut microbial community is observed in BP patients. Similar trends are observed in subclassifications of BP patients, including first diagnoses and relapsed cases. Furthermore, we observe a set of BP disease-associated gut microbial features, including reduced Faecalibacterium prausnitzii and greater abundance of pathways related to gamma-aminobutyric acid (GABA) metabolism in BP patients. Interestingly, F. prausnitzii is a well-known microbiomarker of inflammatory diseases, which has been reported to be reduced in the gut microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays multiple roles in maintaining skin health, including the inhibition of itching by acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2 levels, and maintaining skin elasticity by increasing the expression of type I collagen. These findings thus suggest that gut microbiota alterations present in BP may play a role in the disease, and certain key microbes and functions may contribute to the link between gut dysbiosis and BP disease activity. Further studies to investigate the underlying mechanisms of the gut-skin interaction are thus clearly warranted, which could aid in the development of potential therapeutic interventions.


Asunto(s)
Microbioma Gastrointestinal , Penfigoide Ampolloso , Humanos , Anciano , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S/genética , Susceptibilidad a Enfermedades , Proyectos Piloto , Ácido gamma-Aminobutírico
2.
Sci Rep ; 12(1): 10382, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725889

RESUMEN

Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.


Asunto(s)
Arándanos Azules (Planta) , Fragaria , Rubus , Animales , Drosophila/microbiología , Frutas , Control de Insectos/métodos , Levaduras
3.
Gut Microbes ; 14(1): 2057778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35435797

RESUMEN

Recent rodent microbiome experiments suggest that besides Akkermansia, Parasutterella sp. are important in type 2 diabetes and obesity development. In the present translational human study, we aimed to characterize Parasutterella in our European cross-sectional FoCus cohort (n = 1,544) followed by validation of the major results in an independent Canadian cohort (n = 438). In addition, we examined Parasutterella abundance in response to a weight loss intervention (n = 55). Parasutterella was positively associated with BMI and type 2 diabetes independently of the reduced microbiome α/ß diversity and low-grade inflammation commonly found in obesity. Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untargeted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with high Parasutterella abundance. This is of interest, since Parasutterella is a known high L-cysteine consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, metabolic network enrichment analysis identified an association of high Parasutterella abundance with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body weight gain. This is supported by a significant reduction of the Parasutterella abundance during our weight loss intervention. Together, these data indicate a role for Parasutterella in human type 2 diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes development and the link to the fatty acid biosynthesis pathway for body weight gain in response to a carbohydrate-rich diet in obesity development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Canadá , Estudios Transversales , Cisteína , Carbohidratos de la Dieta , Ácidos Grasos , Humanos , Obesidad , Pérdida de Peso
4.
Eur Eat Disord Rev ; 30(1): 61-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851002

RESUMEN

OBJECTIVE: Knowledge on gut-brain interaction might help to develop new therapies for patients with anorexia nervosa (AN), as severe starvation-induced changes of the microbiome (MI) do not normalise with weight gain. We examine the effects of probiotics supplementation on the gut MI in patients with AN. METHOD: This is a study protocol for a two-centre double-blind randomized-controlled trial comparing the clinical efficacy of multistrain probiotic administration in addition to treatment-as-usual compared to placebo in 60 patients with AN (13-19 years). Moreover, 60 sex- and age-matched healthy controls are included in order to record development-related changes. Assessments are conducted at baseline, discharge, 6 and 12 months after baseline. Assessments include measures of body mass index, psychopathology (including eating-disorder-related psychopathology, depression and anxiety), neuropsychological measures, serum and stool analyses. We hypothesise that probiotic administration will have positive effects on the gut microbiota and the treatment of AN by improvement of weight gain, gastrointestinal complaints and psychopathology, and reduction of inflammatory processes compared to placebo. CONCLUSIONS: If probiotics could help to normalise the MI composition, reduce inflammation and gastrointestinal discomfort and increase body weight, its administration would be a readily applicable additional component of multi-modal AN treatment.


Asunto(s)
Anorexia Nerviosa , Microbioma Gastrointestinal , Probióticos , Adolescente , Anorexia Nerviosa/tratamiento farmacológico , Trastornos de Ansiedad , Método Doble Ciego , Humanos , Probióticos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Poult Sci ; 99(11): 6062-6070, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142525

RESUMEN

Gut microbiota play an important role in animal health. For livestock, an understanding of the effect of husbandry interventions on gut microbiota helps develop methods that increase sustainable productivity, animal welfare, and food safety. Poultry microbiota of the mid-gut and hind-gut can only be investigated postmortem; however, samples from the terminal cloaca may be collected from live animals. This study tests whether cloacal microbiota reflect cecal microbiota in European broiler poultry by evaluating total and paired cecal and cloacal microbiomes from 47 animals. 16S amplicon libraries were constructed and sequenced with a MiSeq 250 bp PE read metric. The composition of cloacal and cecal microbiomes were significantly affected by the age and location of animals, but the effect was very small. Bacilli were relatively more abundant in ceca and Clostridia in cloaca. There was an overlap of 99.5% for the abundances and 59% for the types of taxa between cloacal and cecal communities, but the small fraction of rare nonshared taxa were sufficient to produce a signal for differentiation between cecal and cloacal communities. There was a significant positive correlation between specific taxa abundances in cloacal and cecal communities (Rho = 0.66, P = 2 × 10-16). Paired analyses revealed that cloacal communities were more closely related to cecal communities from the same individual than expected by chance. This study is in line with the only other study to evaluate the relationship between cecal and cloacal microbiomes in broiler poultry, but it extends previous findings by analyzing paired cecal-cloacal samples from the same birds and reveals that abundant bacterial taxa in ceca may be reasonably inferred by sampling cloaca. Together, the findings from Europe and Australasia demonstrate that sampling cloaca shows promise as a method to estimate cecal microbiota, and especially abundant taxa, from live broiler poultry in a manner which reduces cost and increases welfare for husbandry and research purposes.


Asunto(s)
Ciego , Pollos , Cloaca , Microbioma Gastrointestinal , Animales , Bacterias/genética , Biodiversidad , Ciego/microbiología , Cloaca/microbiología , Europa (Continente) , ARN Ribosómico 16S/genética
6.
Front Microbiol ; 7: 1272, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27582735

RESUMEN

In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...