Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Urol Open Sci ; 47: 20-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36601040

RESUMEN

Background: Multiparametric magnetic resonance imaging (mpMRI) improves detection of clinically significant prostate cancer (csPCa), but the subjective Prostate Imaging Reporting and Data System (PI-RADS) system and quantitative apparent diffusion coefficient (ADC) are inconsistent. Restriction spectrum imaging (RSI) is an advanced diffusion-weighted MRI technique that yields a quantitative imaging biomarker for csPCa called the RSI restriction score (RSIrs). Objective: To evaluate RSIrs for automated patient-level detection of csPCa. Design setting and participants: We retrospectively studied all patients (n = 151) who underwent 3 T mpMRI and RSI (a 2-min sequence on a clinical scanner) for suspected prostate cancer at University of California San Diego during 2017-2019 and had prostate biopsy within 180 d of MRI. Intervention: We calculated the maximum RSIrs and minimum ADC within the prostate, and obtained PI-RADS v2.1 from medical records. Outcome measurements and statistical analysis: We compared the performance of RSIrs, ADC, and PI-RADS for the detection of csPCa (grade group ≥2) on the best available histopathology (biopsy or prostatectomy) using the area under the curve (AUC) with two-tailed α = 0.05. We also explored whether the combination of PI-RADS and RSIrs might be superior to PI-RADS alone and performed subset analyses within the peripheral and transition zones. Results and limitations: AUC values for ADC, RSIrs, and PI-RADS were 0.48 (95% confidence interval: 0.39, 0.58), 0.78 (0.70, 0.85), and 0.77 (0.70, 0.84), respectively. RSIrs and PI-RADS were each superior to ADC for patient-level detection of csPCa (p < 0.0001). RSIrs alone was comparable with PI-RADS (p = 0.8). The combination of PI-RADS and RSIrs had an AUC of 0.85 (0.78, 0.91) and was superior to either PI-RADS or RSIrs alone (p < 0.05). Similar patterns were seen in the peripheral and transition zones. Conclusions: RSIrs is a promising quantitative marker for patient-level csPCa detection, warranting a prospective study. Patient summary: We evaluated a rapid, advanced prostate magnetic resonance imaging technique called restriction spectrum imaging to see whether it could give an automated score that predicted the presence of clinically significant prostate cancer. The automated score worked about as well as expert radiologists' interpretation. The combination of the radiologists' scores and automated score might be better than either alone.

2.
NMR Biomed ; 35(5): e4654, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967468

RESUMEN

PURPOSE: The purpose of this study was to investigate the effects of echo time dependence in IVIM quantification of the pseudo-diffusion fraction in breast cancer and whether correcting for the echo time dependence offers added clinical value. MATERIALS AND METHODS: Fifteen patients with biopsy-proven breast cancer underwent a 3 T MRI examination with an extended DWI protocol at two different echo times (TE = 53 ms, b = 0, 50 s/mm2 ; TE = 77 ms, b = 0, 50, 120, 200, 400, 700 s/mm2 ). Volumes of interest were delineated around the tumors. In addition, simulated MRI data were generated for different levels of signal-to-noise ratio and two values for the blood T2 relaxation time (T2p = 100 ms and 150 ms). The pseudo-diffusion signal fraction was estimated from the simulated and in vivo tumor data using both the standard IVIM model and an extended IVIM model that accounts for the echo time dependence arising from distinct transverse relaxation times. RESULTS: Simulations showed that the standard IVIM model overestimated the pseudo-diffusion fraction by 25% (T2p = 100 ms) and 60 % (T2p = 150 ms) (p < 0.0001 at SNR = 50). In vivo, the estimated apparent T2 value at b = 50 s/mm2 was around 8% lower than at b = 0 s/mm2 (p = 0.01) demonstrating a removal of the signal contribution from blood with long T2 associated with pseudo-diffusion. Using two different fixed values for T2p = 100, 150 ms, the pseudo-diffusion fraction was 15% and 46% higher in the standard model compared with the echo-time-corrected model (p < 0.01). CONCLUSION: The standard IVIM model was found to overestimate the pseudo-diffusion fraction by 15% to 46% compared with the echo-time-corrected model in breast tumor DWI data acquired at 3 T. Our results suggest that a corrected model may give more accurate results in terms of signal fractions, but may not justify the added time needed to acquire the additional data in terms of clinical value.


Asunto(s)
Neoplasias de la Mama , Biopsia , Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Movimiento (Física) , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...