Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Res Notes ; 11(1): 397, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921324

RESUMEN

OBJECTIVE: The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes. RESULTS: We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and western part of the species' distribution range in the North Atlantic Ocean. All specimens harboured a unique mitochondrial DNA haplotype. Nine hundred and fifty-two polymorphic sites were identified, including 109 non-synonymous sites within protein coding regions. Eighteen variable sites were identified as indels, exclusively distributed in structural RNA genes and non-coding regions. Phylogeographic analyses based on 156 available cod mitochondrial genomes did not reveal a clear structure. There was a lack of mitochondrial genetic differentiation between two ecotypes of cod in the eastern North Atlantic, but eastern and western cod were differentiated and mitochondrial genome diversity was higher in the eastern than the western Atlantic, suggesting deviating population histories. The geographic distribution of mitochondrial genome variation seems to be governed by demographic processes and gene flow among ecotypes that are otherwise characterized by localized genomic divergence associated with chromosomal inversions.


Asunto(s)
ADN Mitocondrial/genética , Gadus morhua/genética , Animales , Genoma , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
2.
Cancers (Basel) ; 8(3)2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26950155

RESUMEN

Meningiomas represent the most common primary tumors of the central nervous system, but few microRNA (miRNA) profiling studies have been reported so far. Deep sequencing of small RNA libraries generated from two human meningioma biopsies WHO grades I (benign) and II (atypical) were compared to excess dura controls. Nineteen differentially expressed miRNAs were validated by RT-qPCR using tumor RNA from 15 patients and 5 meninges controls. Tumor suppressor miR-218 and miR-34a were upregulated relative to normal controls, however, miR-143, miR-193b, miR-451 and oncogenic miR-21 were all downregulated. From 10 selected putative mRNA targets tested by RT-qPCR only four were differentially expressed relative to normal controls. PTEN and E-cadherin (CDH1) were upregulated, but RUNX1T1 was downregulated. Proliferation biomarker p63 was upregulated with nuclear localization, but not detected in most normal arachnoid tissues. Immunoreactivity of E-cadherin was detected in the outermost layer of normal arachnoids, but was expressed throughout the tumors. Nuclear Cyclin D1 expression was positive in all studied meningiomas, while its expression in arachnoid was limited to a few trabecular cells. Meningiomas of grades I and II appear to share biomarkers with malignant tumors, but with some additional tumor suppressor biomarkers expression. Validation in more patients is of importance.

3.
BMC Evol Biol ; 14: 182, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25145347

RESUMEN

BACKGROUND: Vertebrate mitogenomes are economically organized and usually lack intergenic sequences other than the control region. Intergenic spacers located between the tRNA(Thr) and tRNA(Pro) genes ("T-P spacers") have been observed in several taxa, including gadiform species, but information about their biological roles and putative functions is still lacking. RESULTS: Sequence characterization of the complete European hake Merluccius merluccius mitogenome identified a complex T-P spacer ranging in size from 223-532 bp. Further analyses of 32 gadiform species, representing 8 families and 28 genera, revealed the evolutionary preserved presence of T-P spacers across all taxa. Molecular complexity of the T-P spacers was found to be coherent with the phylogenetic relationships, supporting a common ancestral origin and gain of function during codfish evolution. Intraspecific variation of T-P spacer sequences was assessed in 225 Atlantic cod specimens and revealed 26 haplotypes. Pyrosequencing data representing the mito-transcriptome poly (A) fraction in Atlantic cod identified an abundant H-strand specific long noncoding RNA of about 375 nt. The T-P spacer corresponded to the 5' part of this transcript, which terminated within the control region in a tail-to-tail configuration with the L-strand specific transcript (the 7S RNA). CONCLUSIONS: The T-P spacer is inferred to be evolutionary preserved in gadiform mitogenomes due to gain of function through a long noncoding RNA. We suggest that the T-P spacer adds stability to the H-strand specific long noncoding RNA by forming stable hairpin structures and additional protein binding sites.


Asunto(s)
Secuencia Conservada , ADN Intergénico/genética , Evolución Molecular , Gadiformes/genética , Genoma Mitocondrial/genética , ARN Largo no Codificante/genética , Animales , Filogenia , ARN de Transferencia/genética
4.
PLoS One ; 8(10): e75813, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116077

RESUMEN

MicroRNA profiling represents an important first-step in deducting individual RNA-based regulatory function in a cell, tissue, or at a specific developmental stage. Currently there are several different platforms to choose from in order to make the initial miRNA profiles. In this study we investigate recently developed digital microRNA high-throughput technologies. Four different platforms were compared including next generation SOLiD ligation sequencing and Illumina HiSeq sequencing, hybridization-based NanoString nCounter, and miRCURY locked nucleic acid RT-qPCR. For all four technologies, full microRNA profiles were generated from human cell lines that represent noninvasive and invasive tumorigenic breast cancer. This study reports the correlation between platforms, as well as a more extensive analysis of the accuracy and sensitivity of data generated when using different platforms and important consideration when verifying results by the use of additional technologies. We found all the platforms to be highly capable for microRNA analysis. Furthermore, the two NGS platforms and RT-qPCR all have equally high sensitivity, and the fold change accuracy is independent of individual miRNA concentration for NGS and RT-qPCR. Based on these findings we propose new guidelines and considerations when performing microRNA profiling.


Asunto(s)
Neoplasias de la Mama/genética , Línea Celular Tumoral/metabolismo , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Análisis de Secuencia de ARN/métodos , Neoplasias de la Mama/metabolismo , Femenino , Humanos , MicroARNs/metabolismo
5.
Curr Genet ; 57(3): 213-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21484258

RESUMEN

Expression and processing of mitochondrial gene transcripts are fundamental to mitochondrial function, but information from early vertebrates like teleost fishes is essentially lacking. We have analyzed mitogenome sequences of ten codfishes (family Gadidae), and provide complete sequences from three new species (Saithe, Pollack and Blue whiting). Characterization of the mitochondrial mRNAs in Saithe and Atlantic cod identified a set of ten poly(A) transcripts, and six UAA stop codons are generated by posttranscriptional polyadenylation. Structural assessment of poly(A) sites is consistent with an RNaseP cleavage activity 5' of tRNA acceptor-like stems. COI, ND5 and ND6 mRNAs were found to harbor 3' UTRs with antisense potential extending into neighboring gene regions. While the 3' UTR of COI mRNA is complementary to the tRNA(Ser UCN) and highly similar to that detected in human mitochondria, the ND5 and ND6 3' UTRs appear more heterogenic. Deep sequencing confirms expression of all mitochondrial mRNAs and rRNAs, and provides information about the precise 5' ends in mature transcripts. Our study supports an overall evolutionary conservation in mitochondrial RNA processing events among vertebrates, but reveals some unique 5' and 3' end characteristics in codfish mRNAs with implications to antisense regulation of gene expression.


Asunto(s)
Gadiformes/genética , Mitocondrias/genética , Poli A/genética , ARN Mensajero/química , ARN de Transferencia/química , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Animales , Elementos sin Sentido (Genética)/química , Elementos sin Sentido (Genética)/metabolismo , Secuencia de Bases , Codón de Terminación/química , Gadiformes/metabolismo , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Poli A/metabolismo , Poliadenilación , ARN Mensajero/análisis , ARN Mitocondrial , ARN de Transferencia/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-20493789

RESUMEN

The Atlantic cod (Gadus morhua) is an emerging aquaculture species. Efforts to develop and characterize its genomic recourses, including draft-grade genome sequencing, have been initiated by the research community. The transcriptome represents the whole complement of RNA transcripts in cells and tissues and reflects the expressed genes at various life stages, tissue types, physiological states, and environmental conditions. We are investigating the Atlantic cod transcriptome by Roche 454, Illumina GA, and ABI SOLiD deep sequencing platforms and corresponding bioinformatics. Both embryonic developmental stages and adult tissues are studied. Here we summarize our recent progress in the analyses of nuclear and mitochondrial polyA mRNAs, non-protein-coding intermediate RNAs, and regulatory microRNAs.


Asunto(s)
Gadus morhua/genética , Genoma/genética , Análisis de Secuencia de ADN/métodos , Animales , Biología Computacional , Perfilación de la Expresión Génica , MicroARNs/genética
7.
N Biotechnol ; 25(5): 263-71, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19491044

RESUMEN

The Atlantic cod (Gadus morhua) is a key species in the North Atlantic ecosystem and commercial fisheries, with increasing aquacultural production in several countries. A Norwegian effort to sequence the complete 0.9Gbp genome by the 454 pyrosequencing technology has been initiated and is in progress. Here we review recent progress in large-scale sequence analyses of the nuclear genome, the mitochondrial genome and genome-wide microRNA identification in the Atlantic cod. The nuclear genome will be de novo sequenced with 25 times oversampling. A total of 120 mitochondrial genomes, sampled from several locations in the North Atlantic, are being completely sequenced by Sanger technology in a high-throughput pipeline. These sequences will be included in a new database for maternal marker reference of Atlantic cod diversity. High-throughput 454 sequencing, as well as Evolutionary Image Array (EvoArray) informatics, is used to investigate the complete set of expressed microRNAs and corresponding mRNA targets in various developmental stages and tissues. Information about microRNA profiles will be essential in the understanding of transcriptome complexity and regulation. Finally, developments and perspectives of Atlantic cod aquaculture are discussed in the light of next-generation high-throughput sequence technologies.


Asunto(s)
Gadus morhua/genética , Análisis de Secuencia de ADN/métodos , Animales , Océano Atlántico , Secuencia de Bases , Evolución Molecular , Explotaciones Pesqueras , Predicción , Marcadores Genéticos , Genoma , Genoma Mitocondrial , MicroARNs/metabolismo , Datos de Secuencia Molecular
8.
Eur J Biochem ; 271(5): 1015-24, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15009213

RESUMEN

DiGIR2 is the group I splicing-ribozyme of the mobile twin-ribozyme intron Dir.S956-1, present in Didymium nuclear ribosomal DNA. DiGIR2 is responsible for intron excision, exon ligation, 3'-splice site hydrolysis, and full-length intron RNA circle formation. We recently reported that DiGIR2 splicing (intron excision and exon ligation) competes with hydrolysis and subsequent full-length intron circularization. Here we present experimental evidence that hydrolysis at the 3'-splice site in DiGIR2 is dependent on structural elements within the P9 subdomain not involved in splicing. Whereas the GCGA tetra-loop in P9b was found to be important in hydrolytic cleavage, probably due to tertiary RNA-RNA interactions, the P9.2 hairpin structure was found to be essential for hydrolysis. The most important positions in P9.2 include three adenosines in the terminal loop (L9.2) and a consensus kink-turn motif in the proximal stem. We suggest that the L9.2 adenosines and the kink-motif represent key regulatory elements in the splicing and hydrolytic reaction pathways.


Asunto(s)
Intrones , Conformación de Ácido Nucleico , Empalme del ARN , ARN Catalítico/metabolismo , ARN de Hongos/metabolismo , Hidrólisis , Transcripción Genética
9.
Am J Physiol Heart Circ Physiol ; 283(3): H949-57, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12181123

RESUMEN

Hearts from diabetic db/db mice, a model of Type 2 diabetes, exhibit left ventricular failure and altered metabolism of exogenous substrates. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands reduce plasma lipid and glucose concentrations and improve insulin sensitivity in db/db mice. Consequently, the effect of 4- to 5-wk treatment of db/db mice with a novel PPAR-alpha ligand (BM 17.0744; 25-38 mg x kg(-1) x day(-1)), commencing at 8 wk of age, on ex vivo cardiac function and metabolism was determined. Elevated plasma concentrations of glucose, fatty acids, and triacylglycerol (34.0 +/- 3.6, 2.0 +/- 0.4, and 0.9 +/- 0.1 mM, respectively) were reduced to normal after treatment with BM 17.0744 (10.8 +/- 0.6, 1.1 +/- 0.1, and 0.6 +/- 0.1 mM). Plasma insulin was also reduced significantly in treated compared with untreated db/db mice. Chronic treatment of db/db mice with the PPAR-alpha agonist resulted in a 50% reduction in rates of fatty acid oxidation, with a concomitant increase in glycolysis (1.7-fold) and glucose oxidation (2.3- fold). Correction of the diabetes-induced abnormalities in systemic and cardiac metabolism after BM 17.0744 treatment did not, however, improve left ventricular contractile function.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Láuricos/farmacología , Miocardio/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Función Ventricular Izquierda/fisiología , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Femenino , Glucólisis , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Insulina/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Oxidación-Reducción , Palmitatos/metabolismo , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...