Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34032563

RESUMEN

The cyanobacterial genus Nostoc is an important contributor to carbon and nitrogen bioavailability in terrestrial ecosystems and a frequent partner in symbiotic relationships with non-diazotrophic organisms. However, since this currently is a polyphyletic genus, the diversity of Nostoc-like cyanobacteria is considerably underestimated at this moment. While reviewing the phylogenetic placement of previously isolated Nostoc-like cyanobacteria originating from Brazilian Amazon, Caatinga and Atlantic forest samples, we detected 17 strains isolated from soil, freshwater, rock and tree surfaces presenting patterns that diverged significantly from related strains when ecological, morphological, molecular and genomic traits were also considered. These observations led to the identification of the evaluated strains as representative of three novel nostocacean genera and species: Amazonocrinis nigriterrae gen. nov., sp. nov.; Atlanticothrix silvestris gen. nov., sp. nov.; and Dendronalium phyllosphericum gen. nov., sp. nov., which are herein described according to the rules of the International Code of Nomenclature for algae, fungi and plants. This finding highlights the great importance of tropical and equatorial South American ecosystems for harbouring an unknown microbial diversity in the face of the anthropogenic threats with which they increasingly struggle.


Asunto(s)
Cianobacterias/aislamiento & purificación , Ecosistema , Microbiología Ambiental , Composición de Base , Secuencia de Bases , Brasil , Cianobacterias/citología , Cianobacterias/genética , ADN Bacteriano/genética , ADN Intergénico/genética , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Int J Syst Evol Microbiol ; 67(9): 3301-3309, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28875896

RESUMEN

Tropical ecosystems worldwide host very diverse microbial communities, but are increasingly threatened by deforestation and climate change. Thus, characterization of biodiversity in these environments, and especially of microbial communities that show unique adaptations to their habitats, is a very urgent matter. Information about representatives of the phylum Cyanobacteria in tropical environments is scarce, even though they are fundamental primary producers that help other microbes to thrive in nutrient-depleted habitats, including phyllospheres. In order to increase our knowledge of cyanobacterial diversity, a study was conducted to characterize isolates from Avicennia schaueriana and Merostachys neesii leaves collected at a mangrove and an Atlantic forest reserve located at the littoral of São Paulo state, south-east Brazil. The morphological, ultrastructural, phylogenetic, molecular and ecological features of the strains led to the recognition of the new genus Kryptousia, comprising two new species, Kryptousiamacronema gen. nov., sp. nov. and Kryptousiamicrolepis sp. nov., described here according to the International Code of Nomenclature for algae, fungi and plants. The new genus and species were classified in the nostocalean family Tolypotrichaceae. This finding advances knowledge on the microbial diversity of South American ecosystems and sheds further light on the systematics of cyanobacteria.


Asunto(s)
Cianobacterias/clasificación , Bosques , Filogenia , Hojas de la Planta/microbiología , Clima Tropical , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Mol Phylogenet Evol ; 109: 105-112, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28065865

RESUMEN

Studies investigating the diversity of cyanobacteria from tropical environments are scarce, especially those devoted to the isolation and molecular characterization of the isolated strains. Among the Brazilian biomes, Pantanal has mainly been examined through microscopic observation of environmental samples, resulting in lists of morphotypes without any genetic information. Recently, two studies were conducted evaluating the morphologic and genetic diversity of cultured non-heterocytous cyanobacteria in this biome, which resulted in the separation and description of two novel genera. In order to complement the diversity of cultured cyanobacteria from saline-alkaline lakes in Pantanal, the present study is dedicated to the examination of cultured nitrogen-fixing heterocytous cyanobacteria from this extreme and underexplored environment. A total of fourteen cyanobacterial strains were isolated. According to morphological examination they belong to the order Nostocales and to the subsections IV.I and IV.II, according to the International Code of Nomenclature for Algae, Fungi and Plants and the Bergey's Manual of Systematic Bacteriology, respectively. Phylogenetic evaluation of their 16S rRNA gene sequences resulted in the formation of five clusters. Among them, one is clearly related to the genus Anabaenopsis whilst the remaining clusters may represent new genetic lineages. These novel sequences aid in the delimitation of problematic groups, especially those containing sequences belonging to mixed genera. The application of both morphologic and phylogenetic studies has proven to be an important tool in resolving problematic groups in cyanobacteria systematics. This strategy is essential in order to detect novel cyanobacteria genera from other tropical environments.


Asunto(s)
Cianobacterias/genética , Brasil , Cianobacterias/clasificación , ADN Bacteriano/genética , Variación Genética , Lagos/microbiología , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
4.
Can J Microbiol ; 62(11): 953-960, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27696898

RESUMEN

Cyanobacterial communities on the phyllosphere of 4 plant species inhabiting the endangered Brazilian Atlantic Forest biome were evaluated using cultivation-independent molecular approaches. Total genomic DNA was extracted from cells detached from the surface of leaves of Euterpe edulis, Guapira opposita, Garcinia gardneriana, and Merostachys neesii sampled in 2 Brazilian Atlantic Forest locations along an elevational gradient, i.e., lowland and montane forest. The DNA fingerprinting method PCR-DGGE revealed that the cyanobacterial phyllosphere community structures were mainly influenced by the plant species; geographical location of the plant had little effect. The 16S rRNA gene sequences obtained by clone libraries showed a predominance of nitrogen-fixing cyanobacteria of the order Nostocales, even though the majority of retrieved operational taxonomic units (∼60% of the sequences) showed similarity only to uncultured cyanobacteria phylotypes. The leaf surface of Guapira opposita had the highest richness and diversity of cyanobacteria, whereas the M. neesii (bamboo) had the largest number of copies of cyanobacterial 16S rRNA gene per cm2 of leaf. This study investigated cyanobacteria diversity and its distribution pattern in Atlantic forest phyllosphere. The results indicated that plant species is the main driver of cyanobacteria community assemblage in the phyllosphere and that these communities are made up of a high diversity of cyanobacterial taxa that need to be discovered.

5.
Genome Announc ; 4(3)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284148

RESUMEN

We report here the draft genome assembly of the brackish cyanobacterium Nodularia spumigena strain CENA596 isolated from a shrimp production pond in Rio Grande do Sul, Brazil. The draft genome consists of 291 contigs with a total size of 5,189,679 bp. Secondary metabolite annotations resulted in several predicted gene clusters, including those responsible for encoding the hepatotoxin nodularin.

6.
Mar Drugs ; 13(6): 3892-919, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26096276

RESUMEN

Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).


Asunto(s)
Cromatografía Liquida/métodos , Cianobacterias/metabolismo , Péptidos/química , Espectrometría de Masas en Tándem/métodos , Brasil , Bosques , Péptidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos
7.
Int J Syst Evol Microbiol ; 65(Pt 1): 298-308, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25351877

RESUMEN

The genus Leptolyngbya Anagnostidis & Komárek (1988) was described from a set of strains identified as 'LPP-group B'. The morphology within this group is not particularly informative and underestimates the group's genetic diversity. In the present study, two new pseudanabaenacean genera related to Leptolyngbya morphotypes, Pantanalinema gen. nov. and Alkalinema gen. nov., are described under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants, based on a polyphasic approach. Pantanalinema gen. nov. (type species Pantanalinema rosaneae sp. nov.) has sheaths and trichomes with slight gliding motility, which distinguish this genus from Alkalinema gen. nov. (type species Alkalinema pantanalense sp. nov.), which possesses trichomes arranged in an ornate (interwoven) pattern. 16S rRNA gene sequences of strains of Pantanalinema and Alkalinema exhibited low identity to each other (≤91.6 %) and to other sequences from known pseudanabaenacean genera (≤94.3 and 93.7 %, respectively). In a phylogenetic reconstruction, six sequences from strains of Pantanalinema and four from strains of Alkalinema formed two separate and robust clades (99 % bootstrap value), with the genera Oculatella and Phormidesmis, respectively, as the closest related groups. 16S-23S rRNA intergenic spacer sequences and secondary structures of strains of Pantanalinema and Alkalinema did not correspond to any previous descriptions. The strains of Pantanalinema and Alkalinema were able to survive and produce biomass at a range of pH (pH 4-11) and were also able to alter the culture medium to pH values ranging from pH 8.4 to 9.9. These data indicate that cyanobacterial communities in underexplored environments, such as the Pantanal wetlands, are promising sources of novel taxa.


Asunto(s)
Cianobacterias/clasificación , Lagos/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Brasil , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN , Cloruro de Sodio
8.
J Phycol ; 50(4): 675-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26988451

RESUMEN

Saline-alkaline lakes are extreme environments that limit the establishment and development of life. The Nhecolândia, a subregion of the Pantanal wetland in Brazil, is characterized by the existence of ~500 saline-alkaline lakes, which support an underexplored and rich diversity of microorganisms. In this study, unicellular and homocytous cyanobacteria from five saline-alkaline lakes were accessed by culture-dependent approaches. Morphological evaluation and analyses of near complete sequences (~1400 nt) of the 16S rRNA genes were applied for phylogenetic and taxonomic placement. This polyphasic approach allowed for the determination of the taxonomic position of the isolated strains into the following genera: Cyanobacterium, Geminocystis, Phormidium, Leptolyngbya, Limnothrix, and Nodosilinea. In addition, fourteen Pseudanabaenales and Oscillatoriales representatives of putative novel taxa were found. These sequences fell into five new clades that could correspond to new generic units of the Pseudanabaenaceae and Phormidiaceae families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA