Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 232: 113213, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085885

RESUMEN

Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. ß-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.


Asunto(s)
Plásticos , Agua de Mar , Bacterias/genética , ARN Ribosómico 16S/genética , Ríos , Agua de Mar/microbiología
2.
Bioresour Technol ; 340: 125679, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34364084

RESUMEN

Pseudomonas citronellolis SJTE-3 was isolated as a highly efficient microorganism for biodegradation and valorization of drilling fluids (DF) wastewater. The strain metabolised DF and oily mud exhibiting up to 93%, 86%, 85% and 88% of chemical oxygen demand (COD), n-dodecane, n-tetradecane and naphthalene removal efficiency respectively. Enhanced bioconversion was enabled through production of biosurfactants that reduced the surface tension of water by 53% and resulted in 43.3% emulsification index (E24), while synthesizing 24% of dry cell weight (DCW) as medium-chain-length polyhydroxyalkanoates (PHA). Expression from the main pathways for alkanes and naphthalene biodegradation as well as biosurfactants and PHA biosynthesis revealed that although the alkanes and naphthalene biodegradation routes were actively expressed even at stationary phase, PHA production was stimulated at late stationary phase and putisolvin could comprise the biosurfactant synthesized. The bioconversion of toxic petrochemical residues to added-value thermoelastomers and biosurfactants indicate the high industrial significance of P. citronellolis SJTE-3.


Asunto(s)
Polihidroxialcanoatos , Biodegradación Ambiental , Pseudomonas , Tensoactivos , Aguas Residuales
3.
Environ Pollut ; 159(3): 776-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183261

RESUMEN

The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its (14)C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.


Asunto(s)
Diazinón/metabolismo , Residuos de Plaguicidas/metabolismo , Medición de Riesgo , Contaminantes del Suelo/metabolismo , Suelo/química , Acetonitrilos/química , Agricultura/métodos , Diazinón/análisis , Diazinón/química , Inglaterra , Monitoreo del Ambiente/métodos , Insecticidas/análisis , Insecticidas/química , Insecticidas/metabolismo , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Suelo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Contaminación del Agua
4.
Chemosphere ; 82(2): 187-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21040944

RESUMEN

Cypermethrin is a widely used insecticide that has caused concern due to its toxicity in the aquatic environment. As with all land applied pesticides, the most significant source of water pollution is from the soil, either due to leaching or washoff. The behaviour of cypermethrin in the soil controls the likelihood of future pollution incidents, with two of the most significant processes being the formation of bound residues and microbial degradation. The formation of bound residues and mineralisation was measured in four organically managed soils from the UK. The formation of bound residues was measured using three different extraction solutions, 0.01 M CaCl2, 0.05 M HPCD and acetonitrile. Biodegradation was assessed by measurement of mineralisation of cypermethrin to CO2. The formation of bound residues varied according to extraction method, soil type and length of ageing. In two of the four soils studied, acetonitrile extractability decreased from 100% initially to 12-14% following 100 d ageing. The extent of mineralisation increased after 10-21 d ageing, reaching 33% of remaining activity in one soil, however following 100 d ageing the extent of mineralisation was significantly reduced in three out of the four soils. As with the formation of bound residues, mineralisation was impacted by soil type and length of ageing.


Asunto(s)
Insecticidas/química , Minerales/química , Piretrinas/química , Contaminantes del Suelo/química , Suelo/química , Restauración y Remediación Ambiental , Insecticidas/análisis , Insecticidas/aislamiento & purificación , Piretrinas/análisis , Piretrinas/aislamiento & purificación , Contaminantes del Suelo/análisis , Contaminantes del Suelo/aislamiento & purificación , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...