Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275902

RESUMEN

We investigated Favipiravir (FPV) efficacy in mild cases of COVID-19 without pneumonia and its effects towards viral clearance, clinical condition, and risk of COVID-19 pneumonia development. PCR-confirmed SARS-CoV-2-infected patients without pneumonia were enrolled (2:1) within 10 days of symptomatic onset into FPV and control arms. The former received 1800 mg FPV twice-daily (BID) on Day 1 and 800 mg BID 5-14 days thereafter until negative viral detection, while the latter received supportive care only. The primary endpoint was time to clinical improvement, which was defined by a reduced National Early Warning Score (NEWS) or score of [≤]1. 62 patients (41 female) comprised the FPV arm (median age: 32 years, median BMI: 22 kg/m{superscript 2}) and 31 patients (19 female) comprised the control arm (median age: 28 years, median BMI: 22 kg/m{superscript 2}. The median time to sustained clinical improvement by NEWS was 2 vs 14 days for FPV and control arms respectively (adjusted hazard ratio (aHR) of 2.77, 95% CI 1.57-4.88, P <0.001). The FPV arm also had significantly higher likelihoods of clinical improvement within 14 days after enrolment by NEWS (79% vs 32% respectively, P <0.001), particularly female patients (aOR 6.35, 95% CI 1.49-27.07, P <0.001). 8 (12.9%) and 7 (22.6%) patients in FPV and control arms developed mild pneumonia at a median (range) 6.5 (1-13) and 7 (1-13) days after treatment, respectively (P = 0.316); all recovered well without complications. We can conclude that early treatment of FPV in symptomatic COVID-19 patients without pneumonia was associated with faster clinical improvement.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-482788

RESUMEN

Antiviral interventions are urgently required to support vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data in support of candidate plausibility are required. The speed at which preclinical models have been developed during the pandemic are unprecedented but there is a vital need for standardisation and assessment of the Critical Quality Attributes. This work provides cross-validation for the recent report demonstrating potent antiviral activity of probenecid against SARS-CoV-2 in preclinical models (1). Vero E6 cells were pre-incubated with probenecid, across a 7-point concentration range, or control media for 2 hours before infection with SARS-CoV-2 (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020, Pango B; MOI 0.05). Probenecid or control media was then reapplied and plates incubated for 48 hours. Cells were fixed with 4% v/v paraformaldehyde, stained with crystal violet and cytopathic activity quantified by spectrophotometry at 590 nm. Syrian golden hamsters (n=5 per group) were intranasally inoculated with virus (SARS-CoV-2 Delta variant B.1.617.2; 103 PFU/hamster) for 24 hours prior to treatment. Hamsters were treated with probenecid or vehicle for 4 doses. Hamsters were ethically euthanised before quantification of total and sub-genomic pulmonary viral RNAs. No inhibition of cytopathic activity was observed for probenecid at any concentration in Vero E6 cells. Furthermore, no reduction in either total or sub-genomic RNA was observed in terminal lung samples from hamsters on day 3 (P > 0.05). Body weight of uninfected hamsters remained stable throughout the course of the experiment whereas both probenecid- (6 - 9% over 3 days) and vehicle-treated (5 - 10% over 3 days) infected hamsters lost body weight which was comparable in magnitude (P > 0.5). The presented data do not support probenecid as a SARS-CoV-2 antiviral. These data do not support use of probenecid in COVID-19 and further analysis is required prior to initiation of clinical trials to investigate the potential utility of this drug.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270152

RESUMEN

BackgroundFinding effective therapeutics for COVID-19 continues to be an urgent need, especially considering use context limitations and high cost of currently approved agents. The NACOVID trial investigated the efficacy and safety of repurposed antiprotozoal and antiretroviral drugs, nitazoxanide and atazanavir/ritonavir, used in combination for COVID-19. MethodsIn this pilot, randomized, open-label trial conducted in Nigeria, patients diagnosed with mild to moderate COVID-19 were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics of nitazoxanide active metabolite, tizoxanide, were also evaluated. This trial was registered with ClinicalTrials.gov (NCT04459286). FindingsThere was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2 to 28 in the 35% of patients with detectable virus at baseline (20/57) between the two arms (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant difference in time from enrolment to complete symptom resolution (aHR = 0.535, 95% CI: 0.251 - 1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1546 ng/ml (95% CI: 797-2557), above its putative EC90 in 54% of patients. Tizoxanide was not detectable in saliva. InterpretationThese findings should be interpreted in the context of incomplete enrolment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. FundingThe University of Liverpool. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe potential efficacy of nitazoxanide as a repurposed drug for COVID-19 is being investigated in a number of studies due to confirmed in vitro activity against SARS-CoV-2. Available data from completed randomised controlled trials in which clinical improvement, effect on viral load, and symptom resolution were evaluated as outcomes do not offer conclusive evidence. Added value of this studyIn the NACOVID trial, we sought to take advantage of a model-informed strategy and known interaction between nitazoxanide and atazanavir/ritonavir to achieve optimal concentration of tizoxanide in plasma, and possibly in respiratory tracts of patients with mild to moderate COVID-19. While this strategy significantly enhanced tizoxanide exposure in the plasma of patients, our data indicated poor penetration into the respiratory tracts. Specifically, there were no differences in time to clinical improvement, viral load changes, and symptom resolutions between patients who were given standard of care alone and those who combined it with study intervention. Implications of all the available evidenceThe clinical benefit of nitazoxanide remains uncertain. The present study highlights the need for early insight into target site biodistribution of potential COVID-19 therapeutics to better inform candidate selection for clinical trials.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477397

RESUMEN

The Omicron variant (B.1.1.529) of SARS-CoV-2 has placed enormous strain on global healthcare systems since it was first identified by South African researchers in late 2021. Omicron has >50 mutations which mainly occur in the surface spike protein and this has led to rapid assessment of monoclonal antibodies to assess the impact on virus neutralisation. Ronapreve has shown potential application in post-exposure prophylaxis, mild/moderate disease and in seronegative patients with severe COVID19, but several early reports of loss of in vitro neutralisation activity have been documented. Here, the virological efficacy of Ronapreve was assessed in K18-hACE2 mice to provide an in vivo outcome. Ronapreve reduced sub-genomic RNA in lung and nasal turbinate for the Delta variant but not the Omicron variant of SARS-CoV-2 at doses 2-fold higher than those shown to be active against previous variants of the virus. These data add to the growing evidence that the effectiveness of Ronapreve is compromised for the Omicron variant.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474085

RESUMEN

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The B.1.1.529 Omicron variant is rapidly emerging and has been designated a Variant of Concern (VOC). The variant is highly transmissible and partially or fully evades a spectrum of neutralising antibodies due to a high number of substitutions in the spike glycoprotein. A major question is the relative severity of disease caused by the Omicron variant compared with previous and currently circulating variants of SARS-CoV-2. To address this, a mouse model of infection that recapitulates severe disease in humans, K18-hACE2 mice, were infected with either a Pango B, Delta or Omicron variant of SARS-CoV-2 and their relative pathogenesis compared. In contrast to mice infected with Pango B and Delta variant viruses, those infected with the Omicron variant had less severe clinical signs (weight loss), showed recovery and had a lower virus load in both the lower and upper respiratory tract. This is also reflected by less extensive inflammatory processes in the lungs. Although T cell epitopes may be conserved, the antigenic diversity of Omicron from previous variants would suggest that a change in vaccine may be required to mitigate against the higher transmissibility and global disease burden. However, the lead time to develop such a response may be too late to mitigate the spread and effects of Omicron. These animal model data suggest the clinical consequences of infection with the Omicron variant may be less severe but the higher transmissibility could still place huge burden upon healthcare systems even if a lower proportion of infected patients are hospitalised.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264648

RESUMEN

Despite the success of vaccines and selected repurposed treatments, COVID-19 is likely to remain a global health problem and further chemotherapeutics are required. Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials without characterisation of Pharmacokinetics (PK)/Pharmacodynamics (PD) including safety in COVID-19. One such drug is Nafamostat Mesylate (Nafamostat), a synthetic serine protease inhibitor with anticoagulant and anti-inflammatory properties. Preclinical data has demonstrated that it is has potent antiviral activity against SARS-CoV-2 by directly inhibiting the transmembrane protease serine 2 (TMPRSS2) dependent stage of host cell entry. MethodsWe present the findings of a phase Ib/II open label, platform randomised controlled trial (RCT), exploring the safety of intravenous Nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), Nafamostat or an alternative therapy. Secondary endpoints included clinical endpoints such as number of oxygen free days and clinical improvement/ deterioration, PK/PD, thromboelastometry, D Dimers, cytokines, immune cell flow cytometry and viral load. ResultsData is reported from 42 patients, 21 of which were randomly assigned to receive intravenous Nafamostat. The Nafamostat group developed significantly higher plasma creatinine levels, more adverse events and a lower number of oxygen free days. There were no other statistically significant differences in the primary or secondary endpoints between Nafamostat and SoC. PK data demonstrated that intravenous Nafamostat was rapidly broken down to inactive metabolites. We observed an antifibrinolytic profile, and no significant anticoagulant effects in thromboelastometry. Participants in the Nafamostat group had higher D Dimers compared to SoC. There were no differences in cytokine profile and immune cell phenotype and viral loads between the groups. ConclusionIn hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous Nafamostat. Given the number of negative trials with repurposed drugs, our experimental medicine trial highlights the value of PK/PD studies prior to selecting drugs for efficacy trials. Given the mechanism of action, further evaluation of Nafamostat delivered via a different route may be warranted. This trial demonstrates the importance of experimental trials in new disease entities such as COVID-19 prior to selecting drugs for larger trials.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21263376

RESUMEN

Repurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe COVID-19, but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is an FDA approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modelling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase 1 trial in healthy adult participants was undertaken with high dose nitazoxanide. Participants received 1500mg nitazoxanide orally twice-daily with food for 7 days. Primary outcomes were safety, tolerability, optimum dose and schedule. Intensive pharmacokinetic sampling was undertaken day 1 and 5 with Cmin sampling on day 3 and 7. Fourteen healthy participants were enrolled between 18th February and 11th May 2021. All 14 doses were completed by 10/14 participants. Nitazoxanide was safe and well tolerated with no significant adverse events. Moderate gastrointestinal disturbance (loose stools) occurred in 8 participants (57.1%), with urine and sclera discolouration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on first dose and maintained throughout. Nitazoxanide administered at 1500mg BID with food was safe and well tolerated and a phase 1b/2a study is now being initiated in COVID-19 patients.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-451321

RESUMEN

Repositioning of clinical approved drugs could represent the fastest way to identify therapeutic options during public health emergencies, the majority of drugs explored for repurposing as antivirals for 2019 coronavirus disease (COVID-19) have failed to demonstrate clinical benefit. Without specific antivirals, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to cause major global mortality. Antimalarial drugs, such as chloroquine (CQ)/hydroxychloroquine (HCQ) and mefloquine have emerged as potential anti-SARS-CoV-2 antivirals. CQ/HCQ entered the Solidarity and RECOVERY clinical trials against COVID-19 and showed lack of efficacy. Importantly, mefloquine is not a 4-aminoquinoline like CQ and HCQ and has been previously repurposed for other respiratory diseases. Unlike the 4-aminoquinolines that accumulate in the high pH of intracellular lysosomes of the lung, the high respiratory tract penetration of mefloquine is driven by its high lipophilicity. While CQ and HCQ exhibit activity in Vero E6 cells, their activity is obviated in TMPRSS2-expressing cells, such as Calu-3 cells, which more accurately recapitulate in vivo entry mechanisms for SARS-CoV-2. Accordingly, here we report the anti-SARS-CoV-2 activity of mefloquine in Calu-3 type II pneumocytes and primary human monocytes. Mefloquine inhibited SARS-CoV-2 replication in Calu-3 cells with low cytotoxicity and EC50 and EC90 values of 1.2 and 5.3 {micro}M, respectively. In addition, mefloquine reduced up to 68% the SARS-CoV-2 RNA levels in infected monocytes, reducing viral-induced inflammation. Mefloquine blocked early steps of the SARS-CoV-2 replicative cycle and was less prone than CQ to induce drug-associated viral mutations and synergized with RNA polymerase inhibitor. The pharmacological parameters of mefloquine are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points that this drug may accumulate in the lungs. These data indicate that mefloquine could represent an orally available clinically approved drug option against COVID-19 and should not be neglected on the basis of the failure of CQ and HCQ.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-451654

RESUMEN

Successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention implementable alongside vaccination programmes. Camostat and nafamostat are serine protease inhibitors that inhibit SARS-CoV-2 viral entry in vitro but have not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and while camostat is orally available, both drugs have extremely short plasma half-lives. This study sought to determine whether intranasal dosing at 5 mg/kg twice daily was able to prevent airborne transmission of SARS-CoV-2 from infected to uninfected Syrian golden hamsters. SARS-CoV-2 viral RNA was above the limits of quantification in both saline- and camostat-treated hamsters 5 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, intranasal nafamostat-treated hamsters remained RNA negative for the full 7 days of cohabitation. Changes in body weight over the course of the experiment were supportive of a lack of clinical symptomology in nafamostat-treated but not saline- or camostat-treated animals. These data are strongly supportive of the utility of intranasally delivered nafamostat for prevention of SARS-CoV-2 infection and further studies are underway to confirm absence of pulmonary infection and pathological changes.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-445500

RESUMEN

Currently nitazoxanide is being assessed as a candidate therapeutic for SARS-CoV-2. Unlike many other candidates being investigated, tizoxanide (the active metabolite of nitazoxanide) plasma concentrations achieve antiviral levels after administration of the approved dose, although higher doses are expected to be needed to maintain these concentrations across the dosing interval in the majority of patients. Here an LC-MS/MS assay is described that has been validated in accordance with Food and Drug Administration (FDA) guidelines. Fundamental parameters have been evaluated, and these included accuracy, precision and sensitivity. The assay was validated for human plasma, mouse plasma and Dulbeccos Modified Eagles Medium (DMEM) containing varying concentrations of Foetal Bovine Serum (FBS). Matrix effects are a well-documented source of concern for chromatographic analysis, with the potential to impact various stages of the analytical process, including suppression or enhancement of ionisation. Therefore, a robustly validated LC-MS/MS analytical method is presented capable of quantifying tizoxanide in multiple matrices with minimal impact of matrix effects. The validated assay presented here was linear from 15.6ng/mL to 1000ng/mL. Accuracy and precision ranged between 102.2% and 113.5%, 100.1% and 105.4%, respectively. The presented assay here has applications in both pre-clinical and clinical research and may be used to facilitate further investigations into the application of nitazoxanide against SARS-CoV-2.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-444622

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. So far, several different types of vaccines have shown strong efficacy. However, both the emergence of new SARS-CoV-2 variants and the need to vaccinate a large fraction of the worlds population necessitate the development of alternative vaccines, especially those that are simple and easy to store, transport and administer. Here, we showed that ferritin-like Dps protein from hyperthermophilic Sulfolobus islandicus can be covalently coupled with different SARS-CoV-2 antigens via the SpyCatcher system, to form extremely stable and defined multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) shows particular promise as it elicited a higher antibody titre and an enhanced neutralising antibody response compared to the monomeric RBD. Furthermore, we showed that a single immunisation with the multivalent RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to efficient viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256309

RESUMEN

BackgroundAGILE is a phase Ib/IIa platform for rapidly evaluating COVID-19 treatments. In this trial (NCT04746183) we evaluated the safety and optimal dose of molnupiravir in participants with early symptomatic infection. MethodsWe undertook a dose-escalating, open-label, randomised-controlled (standard-of-care) Bayesian adaptive phase I trial at the Royal Liverpool and Broadgreen Clinical Research Facility. Participants (adult outpatients with PCR-confirmed SARS-CoV-2 infection within 5 days of symptom onset) were randomised 2:1 in groups of 6 participants to 300mg, 600mg and 800mg doses of molnupiravir orally, twice daily for 5 days or control. A dose was judged unsafe if the probability of 30% or greater dose-limiting toxicity (the primary outcome) over controls was higher than 25%. Secondary outcomes included safety, clinical progression, pharmacokinetics and virologic responses. ResultsOf 103 volunteers screened, 18 participants were enrolled between 17 July and 30 October 2020. Molnupiravir was well tolerated at 400, 600 or 800mg doses with no serious or severe adverse events. Overall, 4 of 4 (100%), 4 of 4 (100%) and 1 of 4 (25%) of the participants receiving 300, 600 and 800mg molnupiravir respectively, and 5 of 6 (83%) controls, had at least one adverse event, all of which were mild ([≤]grade 2). The probability of [≥]30% excess toxicity over controls at 800mg was estimated at 0.9%. ConclusionMolnupiravir was safe and well tolerated; a dose of 800mg twice-daily for 5 days was recommended for Phase II evaluation.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-440173

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, also after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally orientated regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates, and broadly support investigation of agents with adequate penetration into relevant regions of the CNS.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-434447

RESUMEN

The ability of acquired immune responses against SARS-CoV-2 to protect after subsequent exposure to emerging variants of concern (VOC) such as B1.1.7 and B1.351 is currently of high significance. Here, we use a hamster model of COVID-19 to show that prior infection with a strain representative of the original circulating lineage B of SARS-CoV-2 induces protection from clinical signs upon subsequent challenge with either B1.1.7 or B1.351 viruses, which recently emerged in the UK and South Africa, respectively. The results indicate that these emergent VOC may be unlikely to cause disease in individuals that are already immune due to prior infection, and this has positive implications for overall levels of infection and COVID-19 disease.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-429628

RESUMEN

Favipiravir (FAV; T-705) has been approved for use as an anti-influenza therapeutic and has reports against a wide range of viruses (e.g., Ebola virus, rabies and norovirus). Most recently FAV has been reported to demonstrate activity against SARS-CoV-2. Repurposing opportunities have been intensively studied with only limited success to date. If successful, repurposing will allow interventions to become more rapidly available than development of new chemical entities. Pre-clinical and clinical investigations of FAV require robust, reproducible and sensitive bioanalytical assay. Here, a liquid chromatography tandem mass spectrometry assay is presented which was linear from 0.78-200 ng/mL Accuracy and precision ranged between 89% and 110%, 101% and 106%, respectively. The presented assay here has applications in both pre-clinical and clinical research and may be used to facilitate further investigations into the application of FAV against SARS-CoV-2.

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249159

RESUMEN

BackgroundThe role of favipiravir as a treatment for COVID-19 is unclear, with discrepant activity against SARS-CoV-2 in vitro, concerns about teratogenicity and pill burden, and an unknown optimal dose. In Vero-E6 cells, high concentrations are needed to inhibit SARS-CoV-2 replication. The purpose of this analysis was to use available data to simulate intracellular pharmacokinetics of favipiravir ribofuranosyl-5-triphosphate (FAVI-RTP) to better understand the putative applicability as a COVID-19 intervention. MethodsPreviously published in vitro data for the intracellular production and elimination of FAVI- RTP in MDCK cells incubated with parent favipiravir was fitted with a mathematical model to describe the time course of intracellular FAVI-RTP concentrations as a function of incubation concentration of parent favipiravir. Parameter estimates from this model fitting were then combined with a previously published population PK model for the plasma exposure of parent favipiravir in Chinese patients with severe influenza (the modelled free plasma concentration of favipiravir substituting for in vitro incubation concentration) to predict the human intracellular FAVI-RTP pharmacokinetics. ResultsIn vitro FAVI-RTP data was adequately described as a function of in vitro incubation media concentrations of parent favipiravir with an empirical model, noting that the model simplifies and consolidates various processes and is used under various assumptions and within certain limits. Parameter estimates from the fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP when driven by a predicted free plasma concentration profile. ConclusionThis modelling approach has several important limitations that are discussed in the main text of the manuscript. However, the simulations indicate that despite rapid clearance of the parent drug from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. Population average intracellular FAVI-RTP concentrations are estimated to maintain the Km for the SARS-CoV-2 polymerase for 3 days following 800 mg BID dosing and 9 days following 1200 mg BID dosing after a 1600 mg BID loading dose on day 1. Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.

17.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-424232

RESUMEN

A key element for the prevention and management of COVID-19 is the development of effective therapeutics. Drug combination strategies of repurposed drugs offer several advantages over monotherapies, including the potential to achieve greater efficacy, the potential to increase the therapeutic index of drugs and the potential to reduce the emergence of drug resistance. Here, we report on the in vitro synergistic interaction between two FDA approved drugs, remdesivir and ivermectin resulting in enhanced antiviral activity against SARS-CoV-2. These findings warrant further investigations into the clinical potential of this combination, together with studies to define the underlying mechanism.

18.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-334532

RESUMEN

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern. To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only. Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis. Taken together, the data suggest that the concept of twinfection is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.

19.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-153411

RESUMEN

Current approaches of drugs repurposing against 2019 coronavirus disease (COVID-19) have not proven overwhelmingly successful and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to cause major global mortality. Daclatasvir (DCV) and sofosbuvir (SFV) are clinically approved against hepatitis C virus (HCV), with satisfactory safety profile. DCV and SFV target the HCV enzymes NS5A and NS5B, respectively. NS5A is endowed with pleotropic activities, which overlap with several proteins from SARS-CoV-2. HCV NS5B and SARS-CoV-2 nsp12 are RNA polymerases that share homology in the nucleotide uptake channel. We thus tested whether SARS-COV-2 would be susceptible these anti-HCV drugs. DCV consistently inhibited the production of infectious SARS-CoV-2 in Vero cells, in the hepatoma cell line (HuH-7) and in type II pneumocytes (Calu-3), with potencies of 0.8, 0.6 and 1.1 M, respectively. Although less potent than DCV, SFV and its nucleoside metabolite inhibited replication in Calu-3 cells. Moreover, SFV/DCV combination (1:0.15 ratio) inhibited SARS-CoV-2 with EC50 of 0.7:0.1 M in Calu-3 cells. SFV and DCV prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Both drugs inhibited independent events during RNA synthesis and this was particularly the case for DCV, which also targeted secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial DCV in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. Doses higher than those approved may ultimately be required, but these data provide a basis to further explore these agents as COVID-19 antiviral candidates.

20.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20087130

RESUMEN

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic by the World Health Organisation and urgent treatment and prevention strategies are needed. Many clinical trials have been initiated with existing medications, but assessments of the expected plasma and lung exposures at the selected doses have not featured in the prioritisation process. Although no antiviral data is currently available for the major phenolic circulating metabolite of nitazoxanide (known as tizoxanide), the parent ester drug has been shown to exhibit in vitro activity against SARS-CoV-2. Nitazoxanide is an anthelmintic drug and its metabolite tizoxanide has been described to have broad antiviral activity against influenza and other coronaviruses. The present study used physiologically-based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported nitazoxanide 90% effective concentration (EC90) against SARS-CoV-2. MethodsA whole-body PBPK model was constructed for oral administration of nitazoxanide and validated against available tizoxanide pharmacokinetic data for healthy individuals receiving single doses between 500 mg - 4000 mg with and without food. Additional validation against multiple-dose pharmacokinetic data when given with food was conducted. The validated model was then used to predict alternative doses expected to maintain tizoxanide plasma and lung concentrations over the reported nitazoxanide EC90 in >90% of the simulated population. Optimal design software PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. ResultsThe PBPK model was validated with AAFE values between 1.01 - 1.58 and a difference less than 2-fold between observed and simulated values for all the reported clinical doses. The model predicted optimal doses of 1200 mg QID, 1600 mg TID, 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food, to provide tizoxanide plasma and lung concentrations over the reported in vitro EC90 of nitazoxanide against SARS-CoV-2. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12h post dose was estimated. ConclusionThe PBPK model predicted that it was possible to achieve plasma and lung tizoxanide concentrations, using proven safe doses of nitazoxanide, that exceed the EC90 for SARS-CoV-2. The PBPK model describing tizoxanide plasma pharmacokinetics after oral administration of nitazoxanide was successfully validated against clinical data. This dose prediction assumes that the tizoxanide metabolite has activity against SARS-CoV-2 similar to that reported for nitazoxanide, as has been reported for other viruses. The model and the reported dosing strategies provide a rational basis for the design (optimising plasma and lung exposures) of future clinical trials of nitazoxanide in the treatment or prevention of SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA