Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109343, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510147

RESUMEN

Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).

2.
Plant Methods ; 19(1): 128, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974271

RESUMEN

BACKGROUND: With the emergence of deep-learning methods, tools are needed to capture and standardize image annotations made by experimentalists. In developmental biology, cell lineages are generally reconstructed from time-lapse data. However, some tissues need to be fixed to be accessible or to improve the staining. In this case, classical software do not offer the possibility of generating any lineage. Because of their rigid cell walls, plants present the advantage of keeping traces of the cell division history over successive generations in the cell patterns. To record this information despite having only a static image, dedicated tools are required. RESULTS: We developed an interface to assist users in the building and editing of a lineage tree from a 3D labeled image. Each cell within the tree can be tagged. From the created tree, cells of a sub-tree or cells sharing the same tag can be extracted. The tree can be exported in a format compatible with dedicated software for advanced graph visualization and manipulation. CONCLUSIONS: The TreeJ plugin for ImageJ/Fiji allows the user to generate and manipulate a lineage tree structure. The tree is compatible with other software to analyze the tree organization at the graphical level and at the cell pattern level. The code source is available at https://github.com/L-EL/TreeJ .

3.
Quant Plant Biol ; 4: e1, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077702

RESUMEN

Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that Arabidopsis thaliana leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis.

4.
Elife ; 112022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36444654

RESUMEN

Noise plays a major role in cellular processes and in the development of tissues and organs. Several studies have examined the origin, the integration or the accommodation of noise in gene expression, cell growth and elaboration of organ shape. By contrast, much less is known about variability in cell division plane positioning, its origin and links with cell geometry, and its impact on tissue organization. Taking advantage of the first-stereotyped-then-variable division patterns in the embryo of the model plant Arabidopsis thaliana, we combined 3D imaging and quantitative cell shape and cell lineage analysis together with mathematical and computer modeling to perform a large-scale, systematic analysis of variability in division plane orientation. Our results reveal that, paradoxically, variability in cell division patterns of Arabidopsis embryos is accompanied by a progressive reduction of heterogeneity in cell shape topology. The paradox is solved by showing that variability operates within a reduced repertoire of possible division plane orientations that is related to cell geometry. We show that in several domains of the embryo, a recently proposed geometrical division rule recapitulates observed variable patterns, suggesting that variable patterns emerge from deterministic principles operating in a variable geometrical context. Our work highlights the importance of emerging patterns in the plant embryo under iterated division principles, but also reveal domains where deviations between rule predictions and experimental observations point to additional regulatory mechanisms.


Asunto(s)
Arabidopsis , Arabidopsis/genética , División Celular , Desarrollo Embrionario , Simulación por Computador , Computadores
5.
Biomedicines ; 10(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35625863

RESUMEN

Food odour is a potent stimulus of food intake. Odour coding in the brain occurs in synergy or competition with other sensory information and internal signals. For eliciting feeding behaviour, food odour coding has to gain signification through enrichment with additional labelling in the brain. Since the ventral striatum, at the crossroads of olfactory and reward pathways, receives a rich dopaminergic innervation, we hypothesized that dopamine plays a role in food odour information processing in the ventral striatum. Using single neurones recordings in anesthetised rats, we show that some ventral striatum neurones respond to food odour. This neuronal network displays a variety of responses (excitation, inhibition, rhythmic activity in phase with respiration). The localization of recorded neurones in a 3-dimensional brain model suggests the spatial segregation of this food-odour responsive population. Using local field potentials recordings, we found that the neural population response to food odour was characterized by an increase of power in the beta-band frequency. This response was modulated by dopamine, as evidenced by its depression following administration of the dopaminergic D1 and D2 antagonists SCH23390 and raclopride. Our results suggest that dopamine improves food odour processing in the ventral striatum.

7.
Sci Rep ; 11(1): 323, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431919

RESUMEN

The spatial organization in the cell nucleus is tightly linked to genome functions such as gene regulation. Similarly, specific spatial arrangements of biological components such as macromolecular complexes, organelles and cells are involved in many biological functions. Spatial interactions among elementary components of biological systems define their relative positioning and are key determinants of spatial patterns. However, biological variability and the lack of appropriate spatial statistical methods and models limit our current ability to analyze these interactions. Here, we developed a framework to dissect spatial interactions and organization principles by combining unbiased statistical tests, multiple spatial descriptors and new spatial models. We used plant constitutive heterochromatin as a model system to demonstrate the potential of our framework. Our results challenge the common view of a peripheral organization of chromocenters, showing that chromocenters are arranged along both radial and lateral directions in the nuclear space and obey a multiscale organization with scale-dependent antagonistic effects. The proposed generic framework will be useful to identify determinants of spatial organizations and to question their interplay with biological functions.


Asunto(s)
Arabidopsis/metabolismo , Heterocromatina/metabolismo , Modelos Biológicos , Arabidopsis/genética , Heterocromatina/genética
8.
J Physiol ; 597(13): 3407-3423, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077360

RESUMEN

KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.


Asunto(s)
Axones/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Fibras Autónomas Preganglionares/fisiología , Miembro Posterior/fisiología , Interneuronas/fisiología , Masculino , Bulbo Raquídeo/fisiología , Músculos/fisiología , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley
9.
PLoS Comput Biol ; 15(2): e1006771, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742612

RESUMEN

Plant tissue architecture and organ morphogenesis rely on the proper orientation of cell divisions. Previous attempts to predict division planes from cell geometry in plants mostly focused on 2D symmetric divisions. Using the stereotyped division patterns of Arabidopsis thaliana early embryogenesis, we investigated geometrical principles underlying plane selection in symmetric and in asymmetric divisions within complex 3D cell shapes. Introducing a 3D computational model of cell division, we show that area minimization constrained on passing through the cell centroid predicts observed divisions. Our results suggest that the positioning of division planes ensues from cell geometry and gives rise to spatially organized cell types with stereotyped shapes, thus underlining the role of self-organization in the developing architecture of the embryo. Our data further suggested the rule could be interpreted as surface minimization constrained by the nucleus position, which was validated using live imaging of cell divisions in the stomatal cell lineage.


Asunto(s)
Arabidopsis/embriología , División Celular/fisiología , Forma de la Célula/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Linaje de la Célula , Núcleo Celular/metabolismo , Simulación por Computador , Modelos Estadísticos
10.
Curr Opin Plant Biol ; 46: 18-24, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30015106

RESUMEN

Heterogeneity is observed at all levels in living organisms, but its role during the development of an individual is not well understood. Heterogeneity has either to be limited to ensure robust development or can be an actor of the biological processes leading to reproducible development. Here we review the sources of heterogeneity in plants, stress the interplay between noise in elementary processes and regulated biological mechanisms, and highlight how heterogeneity is integrated at multiple scales during plant morphogenesis.


Asunto(s)
Células Vegetales/metabolismo , Desarrollo de la Planta , Comunicación Celular , Morfogénesis , Estrés Mecánico
11.
Front Neuroinform ; 12: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29628885

RESUMEN

Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

12.
PLoS Genet ; 14(4): e1007317, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608566

RESUMEN

Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Arabidopsis/genética , Recombinación Homóloga , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , ATPasas Asociadas con Actividades Celulares Diversas/clasificación , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/clasificación , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/clasificación , Proteínas Nucleares/metabolismo , Filogenia , Unión Proteica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Técnicas del Sistema de Dos Híbridos
13.
Methods Mol Biol ; 1675: 493-507, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29052210

RESUMEN

The cell nucleus is a structurally complex and dynamic organelle ensuring key biological functions. Complex relationships between nuclear structure and functions require a better understanding of the three-dimensional organization of the genome and of the subnuclear compartments. Quantitative image analysis coupled with spatial statistics and modeling is a relevant approach to address these questions. In this chapter, we describe a step-by-step procedure to process images and to test a spatial random model for the distribution of nuclear objects using chromocenters as an example. More elaborate models can be designed on the basis of the random model by introducing additional and more complex constraints to better fit observations and to question determinants of these spatial organizations.


Asunto(s)
Arabidopsis/citología , Núcleo Celular/química , Imagenología Tridimensional/métodos , Arabidopsis/química , Núcleo Celular/genética , Microscopía Confocal , Modelos Teóricos , Hojas de la Planta/química , Hojas de la Planta/citología
14.
Methods Mol Biol ; 1563: 185-207, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28324610

RESUMEN

With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Programas Informáticos , Reproducibilidad de los Resultados , Estadística como Asunto/métodos
15.
Ann Neurol ; 81(1): 35-45, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27917533

RESUMEN

OBJECTIVE: A spinal ejaculation generator (SEG) has been identified in the rat with lumbar galaninergic interneurons playing a pivotal role (Science 2002;297:1566-1569). The aim was to evidence a SEG in humans. METHODS: Spatial distribution of galaninergic neurons was studied in postmortem spinal cord segments of 6 men and compared with that of 6 women for evidencing sexual dimorphism. Based on the identified segmental distribution of galaninergic neurons, the ability for penile vibratory stimulation (PVS) to elicit ejaculation when the concerned spinal segments were injured was studied in 384 patients with clinically complete spinal cord injury (SCI) and consequent anejaculation. Such patients represent a unique model to investigate the role of defined spinal segments in the control of ejaculation. RESULTS: Galaninergic neurons were mostly located between L2 and L5 segments in medial lamina VII, with a maximal density within L4. Three-dimensional 3D reconstruction showed that these neurons were grouped into single columns bilaterally to the central canal. In addition, galaninergic neuron density was found higher in L3 and L4 segments in men as compared to women supporting sexual dimorphism. In the patients' cohort, injury of L3-L5 segments was the sole independent predictor for failure of PVS to induce ejaculation. Although evidence from clinical observations was indirect, there is close correspondence to neuroanatomical data. INTERPRETATION: Organization and sexual dimorphism of human spinal galaninergic neurons were similar to the rat's SEG. Neurohistological data, together with clinical results, corroborate the existence of an SEG in humans in L3-L5 segments. Such a generator could be targeted to treat neurogenic and non-neurogenic ejaculatory disorders. ANN NEUROL 2017;81:35-45.


Asunto(s)
Eyaculación/fisiología , Galanina/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiología , Vibración/uso terapéutico , Anciano de 80 o más Años , Femenino , Galanina/metabolismo , Humanos , Vértebras Lumbares , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Caracteres Sexuales , Médula Espinal/anatomía & histología
16.
Plant Cell ; 28(9): 2197-2211, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27495811

RESUMEN

LHP1-INTERACTING FACTOR2 (LIF2), a heterogeneous nuclear ribonucleoprotein involved in Arabidopsis thaliana cell fate and stress responses, interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a Polycomb Repressive Complex1 subunit. To investigate LIF2-LHP1 functional interplay, we mapped their genome-wide distributions in wild-type, lif2, and lhp1 backgrounds, under standard and stress conditions. Interestingly, LHP1-targeted regions form local clusters, suggesting an underlying functional organization of the plant genome. Regions targeted by both LIF2 and LHP1 were enriched in stress-responsive genes, the H2A.Z histone variant, and antagonistic histone marks. We identified specific motifs within the targeted regions, including a G-box-like motif, a GAGA motif, and a telo-box. LIF2 and LHP1 can operate both antagonistically and synergistically. In response to methyl jasmonate treatment, LIF2 was rapidly recruited to chromatin, where it mediated transcriptional gene activation. Thus, LIF2 and LHP1 participate in transcriptional switches in stress-response pathways.

17.
Bioinformatics ; 32(22): 3532-3534, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27412086

RESUMEN

MOTIVATION: Mathematical morphology (MM) provides many powerful operators for processing 2D and 3D images. However, most MM plugins currently implemented for the popular ImageJ/Fiji platform are limited to the processing of 2D images. RESULTS: The MorphoLibJ library proposes a large collection of generic tools based on MM to process binary and grey-level 2D and 3D images, integrated into user-friendly plugins. We illustrate how MorphoLibJ can facilitate the exploitation of 3D images of plant tissues. AVAILABILITY AND IMPLEMENTATION: MorphoLibJ is freely available at http://imagej.net/MorphoLibJ CONTACT: david.legland@nantes.inra.frSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Programas Informáticos
18.
Development ; 143(18): 3417-28, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27387872

RESUMEN

A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.


Asunto(s)
Hojas de la Planta/anatomía & histología , Programas Informáticos , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopía Fluorescente , Hojas de la Planta/metabolismo
19.
Plant J ; 87(2): 230-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121260

RESUMEN

The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.


Asunto(s)
Células/ultraestructura , Imagenología Tridimensional/métodos , Arabidopsis/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Programas Informáticos , Análisis Espacial , Fracciones Subcelulares/ultraestructura
20.
Bioinformatics ; 31(7): 1144-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25416749

RESUMEN

UNLABELLED: NucleusJ is a simple and user-friendly ImageJ plugin dedicated to the characterization of nuclear morphology and chromatin organization in 3D. Starting from image stacks, the nuclear boundary is delimited by combining the Otsu segmentation method with optimization of nuclear sphericity. Chromatin domains are segmented by partitioning the nucleus using a 3D watershed algorithm and by thresholding a contrast measure over the resulting regions. As output, NucleusJ quantifies 15 parameters including shape and size of nuclei as well as intra-nuclear objects and their position within the nucleus. A step-by-step documentation is available for self-training, together with data sets of nuclei with different nuclear organization. AVAILABILITY AND IMPLEMENTATION: Dataset of nuclei is available at https://www.gred-clermont.fr/media/WorkDirectory.zip. NucleusJ is available at http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:nuclear_analysis_plugin:start. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Núcleo Celular/genética , Procesamiento de Imagen Asistido por Computador/métodos , Interfase/genética , Humanos , Imagenología Tridimensional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...