Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38591866

RESUMEN

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Asunto(s)
Acetilcisteína , Materiales Biocompatibles , Ensayo de Materiales , Nanopartículas , Agujas , Tamaño de la Partícula , Impresión Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacología , Rivastigmina/química , Rivastigmina/farmacología , Rivastigmina/administración & dosificación , Humanos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sistemas de Liberación de Medicamentos , Piel/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Supervivencia Celular/efectos de los fármacos
2.
ACS Biomater Sci Eng ; 9(8): 5072-5083, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37528336

RESUMEN

In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device. Light microscopy was used to quality control the printability of the designs, confirming that the actual dimensions are in agreement with the digital design. Non-destructive volume imaging by means of microfocus computed tomography was employed for dimensional and defect characterization of the DLP-printed devices, demonstrating the actual volumes of the reservoirs and the malformations that occurred during printing. The penetration test and finite element analysis showed that the maximum stress experienced by the needles during the insertion process (10 N) was below their ultimate compressive strength (240-310 N). Permeation studies showed the increased permeability of three model drugs when delivered with the MN devices. Size-exclusion chromatography validated the stability of all the actives throughout the permeability tests. The safety of these printed devices for buccal administration was confirmed by histological evaluation and cell viability studies using the TR146 cell line, which indicated no toxic effects.


Asunto(s)
Impresión Tridimensional , Luz , Agujas , Humanos , Línea Celular , Supervivencia Celular
3.
Gels ; 8(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36354613

RESUMEN

Medium Chain Triglyceride (MCT) oil was successfully combined with Glyceryl Monostearate (GMS) and Glyceryl Monoolein (GMO) to form oleogels that were subsequently whipped to form stable oleofoams. The co-crystallization of GMS and GMO at a ratio of 20:1, 20:2.5, and 20:5 within MCT oil was studied through Differential Scanning Calorimetry (DSC), X-ray Diffraction analysis (XRD), rheological analysis, Fluorescence Recovery after Photobleaching (FRAP), Fourier Transform Infrared Spectroscopy (FTIR), and polarized microscopy. The addition of 5% GMO resulted in the production of more stable oleogels in terms of crystal structure and higher peak melting point, rendering this formulation suitable for pharmaceutical applications that are intended to be used internally and those that require stability at temperatures close to 40 °C. All formulations were whipped to form oleofoams that were evaluated for their storage stability for prolonged period at different temperatures. The results show that oleofoams containing 5% MGO retained their foam characteristics even after 3 months of storage under different temperature conditions.

4.
Micromachines (Basel) ; 13(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014241

RESUMEN

The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.

5.
Pharmaceutics ; 14(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36015263

RESUMEN

In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.

6.
Mol Pharm ; 18(12): 4393-4414, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34699238

RESUMEN

This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.


Asunto(s)
Estabilidad de Medicamentos , Indometacina/química , Reactivos de Enlaces Cruzados , Composición de Medicamentos , Liberación de Fármacos , Simulación de Dinámica Molecular
7.
Eur J Pharm Sci ; 165: 105955, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34298141

RESUMEN

In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by ζ-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.


Asunto(s)
Budesonida , Administración por Inhalación , Animales , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Fumarato de Formoterol , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Porcinos
8.
Adv Drug Deliv Rev ; 176: 113858, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34237405

RESUMEN

In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitive advantages over conventional dosage forms, aiming to entice innovation in drug formulation with special focus on sensitive patient populations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Membrana Mucosa/metabolismo , Impresión Tridimensional , Adhesividad , Animales , Disponibilidad Biológica , Desarrollo de Medicamentos/métodos , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Medicina de Precisión/métodos , Tecnología Farmacéutica/métodos
9.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672949

RESUMEN

Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state. The release profiles of the drug from the two different mesoporous materials were studied in various release media and revealed an aprepitant release up to 45% when sink conditions are applied. The cytocompatibility of the silica nanoparticles was assessed in Caco-2 cell monolayers, in the presence and absence of the active agent, suggesting that they can be used as carriers of aprepitant without presenting any toxicity in vitro.


Asunto(s)
Aprepitant/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química , Administración Oral , Antieméticos/administración & dosificación , Antieméticos/farmacocinética , Aprepitant/farmacocinética , Células CACO-2 , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Difusión , Liberación de Fármacos , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Pharm ; 599: 120437, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662466

RESUMEN

Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Liberación de Fármacos , Humanos , Reproducibilidad de los Resultados
11.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451168

RESUMEN

Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 µm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 µm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.

12.
AAPS PharmSciTech ; 22(1): 23, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400042

RESUMEN

Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 µm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.


Asunto(s)
Cannabidiol/administración & dosificación , Cannabinoides/administración & dosificación , Nanofibras/química , Administración Oral , Cannabidiol/química , Cannabinoides/química , Composición de Medicamentos , Liberación de Fármacos , Ácidos Polimetacrílicos/química , Povidona/química
14.
Carbohydr Polym ; 247: 116666, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829794

RESUMEN

The present study reports on the comprehensive physico-mechanical evaluation of 3D printable alginate-methylcellulose hydrogels with bioactive components (Manuka honey, aloe vera gel, eucalyptus essential oil) using a combined experimental-numerical approach. The 3D printable carbohydrate inks demonstrated good swelling properties under moist conditions and adequate antimicrobial and antibiofilm efficacy against both Gram positive and negative bacteria. The effect of the bioactive compounds on the viscosity and mechanical properties of the 3D printable hydrogels was assessed with rheological, nanoindentation and shear test measurements. All hydrogel compositions showed good biocompatibility on human dermal fibroblasts, stimulating cell growth as confirmed by an in vitro wound healing assay. Finite element analysis simulation was employed to further advance the calculation accuracy of the nanoindentation tests, concluding that combination of an experimental and a numerical technique may constitute a useful method to characterize the mechanical behavior of composite hydrogel films for use in wound healing applications.


Asunto(s)
Alginatos/química , Dermis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Hidrogeles/administración & dosificación , Metilcelulosa/química , Impresión Tridimensional/instrumentación , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular , Análisis de Elementos Finitos , Humanos , Hidrogeles/química , Tinta
15.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825421

RESUMEN

Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents' mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.

16.
Drug Dev Ind Pharm ; 46(10): 1569-1577, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32619372

RESUMEN

In the current study a 3D-printable system was developed, based on natural, food-grade and nontoxic materials that may be used as a platform technology to host cannabinoids, and more specifically CBD for medicinal purposes. Pectin and honey were combined toward the fabrication of 3D printable inks that form solid structures upon drying. This model food-grade 3D-printed system was evaluated as a host matrix for the incorporation of CBD, in the form of inclusion complexes with ß-cyclodextrins. The prepared solid inclusion complexes were characterized by means of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared (FTIR) and Thermogravimetric Analysis (TGA) complemented with phase solubility studies and in vitro release of the ß-CD/CBD complex. The release behavior of CBD from the 3D printed formulations was assessed in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The results shown that that the highest release rates of CBD were obtained in SCF medium, with minor release in SGF and SIF media.


Asunto(s)
Cannabidiol/química , Ciclodextrinas , Pectinas/química , Rastreo Diferencial de Calorimetría , Tinta , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
17.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597338

RESUMEN

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Asunto(s)
Derivados de la Hipromelosa/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Impresión Tridimensional
18.
Pharmaceutics ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295189

RESUMEN

Undesirable taste has always been a key issue for oral dosage forms. The aim of the present study was to co-formulate dexamethasone sodium phosphate (DSP), in common pediatric oral forms, using sweet preserves and/or different types of chocolate as excipients. An array of different kinds of chocolate were co-formulated with DSP and were further characterized by means of dynamic light scattering (DLS), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) spectroscopy. For the assay of active pharmaceutical ingredient (API), the chocolate samples were pre-treated by means of liquid extraction and analyzed using an high-performance liquid chromatographic (HPLC) method with a strong anion exchange column and a phosphate buffer (17 mM, pH = 3)/acetonitrile, 50:50 v/v as mobile phase. The developed chromatographic method was validated based on the International Conference on Harmonization (ICH) guidelines (%Mean Recovery = 99.4% and %Relative Standard Deviation, RSD = 0.43%). Furthermore, dissolution and in vitro digestion tests of chocolate formulations were evaluated. The DSP was found to be stable for at least 1 year in prepared preparations.

19.
Pharmaceutics ; 12(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936630

RESUMEN

Biodegradable 3D-printable inks based on pectin have been developed as a system for direct and indirect wound-dressing applications, suitable for 3D printing technologies. The 3D-printable inks formed free-standing transparent films upon drying, with the latter exhibiting fast disintegration upon contact with aqueous media. The antimicrobial and wound-healing activities of the inks have been successfully enhanced by the addition of particles, comprised of chitosan and cyclodextrin inclusion complexes with propolis extract. Response Surface Methodology (RSM) was applied for the optimization of the inks (extrusion-printing pressure, shrinkage minimization over-drying, increased water uptake and minimization of the disintegration of the dry patches upon contact with aqueous media). Particles comprised of chitosan and cyclodextrin/propolis extract inclusion complexes (CCP), bearing antimicrobial properties, were optimized and integrated with the produced inks. The bioprinted patches were assessed for their cytocompatibility, antimicrobial activity and in vitro wound-healing properties. These studies were complemented with ex vivo skin adhesion measurements, a relative surface hydrophobicity and opacity measurement, mechanical properties, visualization, and spectroscopic techniques. The in vitro wound-healing studies revealed that the 3D-bioprinted patches enhanced the in vitro wound-healing process, while the incorporation of CCP further enhanced wound-healing, as well as the antimicrobial activity of the patches.

20.
Pharmaceutics ; 12(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861296

RESUMEN

The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...