Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 33(8): 9235-9249, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145643

RESUMEN

Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 (HES3) and sensitivity to HES3 knockdown, and it can be modeled in vitro. Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high HES3 expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following HES3 knockdown in the HES3-high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the HES3-high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high-HES3-expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery.


Asunto(s)
Glioblastoma/metabolismo , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Descubrimiento de Drogas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Glioblastoma/genética , Humanos , Interferencia de ARN , Proteínas Represoras/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
Sci Rep ; 8(1): 11335, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054579

RESUMEN

Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced ß-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.


Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Dieta Alta en Grasa , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Metformina/administración & dosificación , Proteínas del Tejido Nervioso/metabolismo , Estreptozocina/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Represoras
3.
PLoS One ; 13(3): e0194643, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29596439

RESUMEN

Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell-cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.


Asunto(s)
Corteza Suprarrenal/citología , Órganos Artificiales , Regulación de la Expresión Génica , Células Madre/metabolismo , Corteza Suprarrenal/fisiología , Hormona Adrenocorticotrópica/farmacología , Animales , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Esteroide Hidroxilasas/genética , Factores de Tiempo
4.
Acta Biomater ; 58: 12-25, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576716

RESUMEN

Cancer stem cells (CSCs) are responsible for drug resistance, tumor recurrence, and metastasis in several cancer types, making their eradication a primary objective in cancer therapy. Glioblastoma Multiforme (GBM) tumors are usually composed of a highly infiltrating CSC subpopulation, which has Nestin as a putative marker. Since the majority of these infiltrating cells are able to elude conventional therapies, we have developed gold nanorods (AuNRs) functionalized with an engineered peptide capable of specific recognition and selective eradication of Nestin positive infiltrating GBM-CSCs. These AuNRs generate heat when irradiated by a near-infrared laser, and cause localized cell damage. Nanoparticle internalization assays performed with GBM-CSCs or Nestin negative cells cultured as two-dimensional (2D) monolayers or embedded in three-dimensional (3D) biodegradable-hydrogels of tunable mechanical properties, revealed that the AuNRs were mainly internalized by GBM-CSCs, and not by Nestin negative cells. The AuNRs were taken up via energy-dependent and caveolae-mediated endocytic mechanisms, and were localized inside endosomes. Photothermal treatments resulted in the selective elimination of GBM-CSCs through cell apoptosis, while Nestin negative cells remained viable. Results also indicated that GBM-CSCs embedded in hydrogels were more resistant to AuNR photothermal treatments than when cultured as 2D monolayers. In summary, the combination of our engineered AuNRs with our tunable hydrogel system has shown the potential to provide an in vitro platform for the evaluation and screening of AuNR-based cancer therapeutics, leading to a substantial advancement in the application of AuNRs for targeted GBM-CSC therapy. STATEMENT OF SIGNIFICANCE: There is an urgent need for reliable and efficient therapies for the treatment of Glioblastoma Multiforme (GBM), which is currently an untreatable brain tumor form with a very poor patient survival rate. GBM tumors are mostly comprised of cancer stem cells (CSCs), which are responsible for tumor reoccurrence and therapy resistance. We have developed gold nanorods functionalized with an engineered peptide capable of selective recognition and eradication of GBM-CSCs via heat generation by nanorods upon NIR irradiation. An in vitro evaluation of nanorod therapeutic activities was performed in 3D synthetic-biodegradable hydrogel models with distinct biomechanical cues, and compared to 2D cultures. Results indicated that cells cultured in 3D were more resistant to photothermolysis than in 2D systems.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Glioblastoma , Oro , Hidrogeles/química , Nanotubos/química , Péptidos , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Oro/química , Oro/farmacología , Humanos , Péptidos/química , Péptidos/farmacología
5.
Oncotarget ; 8(20): 33316-33328, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28410196

RESUMEN

EGFR pathway is upregulated in malignant gliomas, and its downstream signaling is important for self-renewal of glioma cancer stem-like cells (GSC). p38 mitogen-activated protein kinase (MAPK) signaling, a stress-activated signaling cascade with suppressive and permissive effects on tumorigenesis, can promote internalization and ubiquitin ligase mediated degradation of EGFR. In this study, we investigated the role of p38 MAPK signaling on the self-renewal of GSCs with the hypothesis that inhibition may lead to enhanced self-renewal capacity by retention of EGFR. Inhibition of p38 MAPK pathway led to increase in EGFR expression but surprisingly, reduced proliferation. Additional functional evaluation revealed that p38 inhibition was associated with decrease in cell death and maintenance of undifferentiated state. Further probing the effect of p38 inhibition demonstrated attenuation of EGFR downstream signaling activity in spite of prolonged surface expression of the receptor. In vitro observations were confirmed in xenograft in vivo experiments. These data suggest that p38 MAPK control of EGFR signaling activity may alter GSC cell cycle state by regulating quiescence and passage into transit amplifying state.


Asunto(s)
Receptores ErbB/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Fase de Descanso del Ciclo Celular , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Receptores ErbB/genética , Expresión Génica , Glioma/genética , Glioma/patología , Humanos , Ligandos , Fosforilación , Unión Proteica , Transporte de Proteínas
6.
Sci Rep ; 7: 43946, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287094

RESUMEN

Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics.

7.
Mol Cell Endocrinol ; 441: 156-163, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-27637345

RESUMEN

The adrenal gland is a highly plastic organ with the capacity to adapt the body homeostasis to different physiological needs. The existence of stem-like cells in the adrenal cortex has been revealed in many studies. Recently, we identified and characterized in mice a pool of glia-like multipotent Nestin-expressing progenitor cells, which contributes to the plasticity of the adrenal medulla. In addition, we found that these Nestin progenitors are actively involved in the stress response by giving rise to chromaffin cells. Interestingly, we also observed a Nestin-GFP-positive cell population located under the adrenal capsule and scattered through the cortex. In this article, we discuss the possibility of a common progenitor giving rise to subpopulations of cells both in the adrenal cortex and medulla, the isolation and characterization of this progenitor as well as its clinical potential in transplantation therapies and in pathophysiology.


Asunto(s)
Adaptación Fisiológica , Corteza Suprarrenal/citología , Células Cromafines/citología , Células Madre/citología , Estrés Fisiológico , Animales , Humanos , Enfermedades Neurodegenerativas/terapia
8.
Brain Res ; 1642: 124-130, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27018293

RESUMEN

Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Enfermedades Desmielinizantes/genética , Regulación de la Expresión Génica , Corteza Motora/metabolismo , Vaina de Mielina/genética , Proteínas del Tejido Nervioso/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras
9.
Diabetes ; 65(2): 314-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26798118

RESUMEN

Loss of insulin-producing pancreatic islet ß-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Células-Madre Neurales/fisiología , Páncreas/fisiología , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas Hedgehog/fisiología , Humanos , Ratones , Ratones Desnudos , Organogénesis/fisiología , Páncreas/embriología , Transducción de Señal/fisiología
10.
Stem Cells Transl Med ; 4(11): 1251-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371344

RESUMEN

UNLABELLED: Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to ß-like cells). Specifically for acinar-to-ß-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research. SIGNIFICANCE: Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription factors, but recently, success has been reported with manipulating signal transduction pathways that might intercept them. It is important to start connecting the function of the classic reprogramming genes to signaling pathways that also mediate reprogramming, unifying the sciences of signal transduction, stem cell biology, and epigenetics. Neural stem cell studies have revealed the operation of noncanonical signaling pathways that are now appreciated to also operate during reprogramming, offering new mechanistic explanations.


Asunto(s)
Reprogramación Celular , Proteínas de Unión al ADN/biosíntesis , Células-Madre Neurales/metabolismo , Factor de Transcripción STAT3/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Humanos , Células-Madre Neurales/citología , Proteínas Represoras , Factor de Transcripción STAT3/genética , Factores de Transcripción/genética
11.
Stem Cells ; 33(6): 2037-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25802118

RESUMEN

The neural crest-derived adrenal medulla is closely related to the sympathetic nervous system; however, unlike neural tissue, it is characterized by high plasticity which suggests the involvement of stem cells. Here, we show that a defined pool of glia-like nestin-expressing progenitor cells in the adult adrenal medulla contributes to this plasticity. These glia-like cells have features of adrenomedullary sustentacular cells, are multipotent, and are able to differentiate into chromaffin cells and neurons. The adrenal is central to the body's response to stress making its proper adaptation critical to maintaining homeostasis. Our results from stress experiments in vivo show the activation and differentiation of these progenitors into new chromaffin cells. In summary, we demonstrate the involvement of a new glia-like multipotent stem cell population in adrenal tissue adaptation. Our data also suggest the contribution of stem and progenitor cells in the adaptation of neuroendocrine tissue function in general.


Asunto(s)
Adaptación Fisiológica , Médula Suprarrenal/citología , Diferenciación Celular/fisiología , Células Cromafines/citología , Células Madre Multipotentes/citología , Neuronas/citología , Estrés Fisiológico , Animales , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/citología
12.
Mol Cell Endocrinol ; 408: 178-84, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25575455

RESUMEN

The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.


Asunto(s)
Médula Suprarrenal/citología , Separación Celular/métodos , Células Madre Multipotentes/citología , Médula Suprarrenal/trasplante , Animales , Carcinogénesis/patología , Humanos , Modelos Biológicos , Trasplante de Células Madre
13.
J Biol Chem ; 289(51): 35503-16, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25371201

RESUMEN

The transcription factor Hes3 is a component of a signaling pathway that supports the growth of neural stem cells with profound consequences in neurodegenerative disease models. Here we explored whether Hes3 also regulates pancreatic islet cells. We showed that Hes3 is expressed in human and rodent pancreatic islets. In mouse islets it co-localizes with alpha and beta cell markers. We employed the mouse insulinoma cell line MIN6 to perform in vitro characterization and functional studies in conditions known to modulate Hes3 based upon our previous work using neural stem cell cultures. In these conditions, cells showed elevated Hes3 expression and nuclear localization, grew efficiently, and showed higher evoked insulin release responses, compared with serum-containing conditions. They also exhibited higher expression of the transcription factor Pdx1 and insulin. Furthermore, they were responsive to pharmacological treatments with the GLP-1 analog Exendin-4, which increased nuclear Hes3 localization. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed cell growth and affected gene expression as revealed by DNA microarrays. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Hes3 overexpression (using a Hes3-GFP fusion construct) confirmed a role of Hes3 in regulating Pdx1 expression. Hes3 RNA interference reduced evoked insulin release. Mice lacking Hes3 exhibited increased islet damage by streptozotocin. These data suggest roles of Hes3 in pancreatic islet function.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Factores de Transcripción/genética , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Exenatida , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/genética , Secreción de Insulina , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Obesos , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Péptidos/farmacología , Interferencia de ARN , Proteínas Represoras , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ponzoñas/farmacología
14.
Methods Mol Biol ; 1213: 293-302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25173392

RESUMEN

In order to establish novel therapeutic paradigms and advance the field of regenerative medicine, methods for their effective implementation as well as rigorous assessment of outcomes are critical. This is especially evident and challenging in the context of treating complex and devastating neurodegenerative disorders, such as Parkinson's disease, multiple sclerosis, and ischemic stroke. Stem cell-based approaches offer great promise in addressing these conditions. Here, we demonstrate an approach for identifying factors that mobilize endogenous neural stem cells in the repair and recovery of the central nervous system of rodents, involving site-specific administration of growth factors that activate particular signal transduction pathways, and that allows for the assessment of outcome utilizing magnetic resonance imaging and immunohistochemistry.


Asunto(s)
Regeneración Nerviosa , Células-Madre Neurales/citología , Medicina Regenerativa , Trasplante de Células Madre , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/patología , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/terapia , Ratas , Medicina Regenerativa/métodos
15.
Hepatology ; 60(4): 1196-210, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24845056

RESUMEN

UNLABELLED: The low-grade inflammatory state present in obesity contributes to obesity-related metabolic dysregulation, including nonalcoholic steatohepatitis (NASH) and insulin resistance. Intercellular interactions between immune cells or between immune cells and hepatic parenchymal cells contribute to the exacerbation of liver inflammation and steatosis in obesity. The costimulatory molecules, B7.1 and B7.2, are important regulators of cell-cell interactions in several immune processes; however, the role of B7 costimulation in obesity-related liver inflammation is unknown. Here, diet-induced obesity (DIO) studies in mice with genetic inactivation of both B7.1 and B7.2 (double knockout; DKO) revealed aggravated obesity-related metabolic dysregulation, reduced insulin signalling in the liver and adipose tissue (AT), glucose intolerance, and enhanced progression to steatohepatitis resulting from B7.1/B7.2 double deficiency. The metabolic phenotype of B7.1/B7.2 double deficiency upon DIO was accompanied by increased hepatic and AT inflammation, associated with largely reduced numbers of regulatory T cells (Tregs) in these organs. In order to assess the role of B7 costimulation in DIO in a non-Treg-lacking environment, we performed antibody (Ab)-mediated inhibition of B7 molecules in wild-type mice in DIO. Antibody-blockade of both B7.1 and B7.2 improved the metabolic phenotype of DIO mice, which was linked to amelioration of hepatic steatosis and reduced inflammation in liver and AT. CONCLUSION: Our study demonstrates a dual role of B7 costimulation in the course of obesity-related sequelae, particularly NASH. The genetic inactivation of B7.1/B7.2 deteriorates obesity-related liver steatosis and metabolic dysregulation, likely a result of the intrinsic absence of Tregs in these mice, rendering DKO mice a novel murine model of NASH. In contrast, inhibition of B7 costimulation under conditions where Tregs are present may provide a novel therapeutic approach for obesity-related metabolic dysregulation and, especially, NASH.


Asunto(s)
Antígenos B7/fisiología , Síndrome Metabólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/fisiopatología , Animales , Antígenos B7/deficiencia , Antígenos B7/genética , Comunicación Celular/fisiología , Modelos Animales de Enfermedad , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Fenotipo , Linfocitos T Reguladores/patología
16.
Stem Cells Transl Med ; 3(7): 801-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855275

RESUMEN

We present a method to efficiently culture primary chromaffin progenitors from the adult bovine adrenal medulla in a defined, serum-free monolayer system. Tissue is dissociated and plated for expansion under support by the mitogen basic fibroblast growth factor (bFGF). The cultures, although not homogenous, contain a subpopulation of cells expressing the neural stem cell marker Hes3 that also propagate. In addition, Hes3 is also expressed in the adult adrenal medulla from where the tissue is taken. Differentiation is induced by bFGF withdrawal and switching to Neurobasal medium containing B27. Following differentiation, Hes3 expression is lost, and cells acquire morphologies and biomarker expression patterns of chromaffin cells and dopaminergic neurons. We tested the effect of different treatments that we previously showed regulate Hes3 expression and cell number in cultures of fetal and adult rodent neural stem cells. Treatment of the cultures with a combination of Delta4, Angiopoietin2, and a Janus kinase inhibitor increases cell number during the expansion phase without significantly affecting catecholamine content levels. Treatment with cholera toxin does not significantly affect cell number but reduces the ratio of epinephrine to norepinephrine content and increases the dopamine content relative to total catecholamines. These data suggest that this defined culture system can be used for target identification in drug discovery programs and that the transcription factor Hes3 may serve as a new biomarker of putative adrenomedullary chromaffin progenitor cells.


Asunto(s)
Médula Suprarrenal/metabolismo , Técnicas de Cultivo de Célula , Células Cromafines/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Médula Suprarrenal/citología , Médula Suprarrenal/efectos de los fármacos , Angiopoyetina 2/farmacología , Animales , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Bovinos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Toxina del Cólera/farmacología , Células Cromafines/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/farmacología , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Proteínas de la Membrana/farmacología , Células-Madre Neurales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética
17.
Int J Radiat Biol ; 90(8): 700-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24512568

RESUMEN

PURPOSE: In this work we examined the presence of the neural stem cell biomarker Hairy and Enhancer of Split 3 (Hes3) in the anterior eye segment and in the aberrant growth condition of the conjunctiva pterygium. Further, we studied the response of Hes3 to irradiation. MATERIALS AND METHODS: Adult mouse and human corneoscleral junction and conjunctiva, as well as human pterygium were prepared for immunohistochemical detection of Hes3 and other markers. Total body irradiation was used to study the changes in the pattern of Hes3 expression. RESULTS: The adult rodent and human eye as well as pterygium, contain a population of cells expressing Hes3. In the human eye, Hes3-expressing (Hes3+) cells are found predominantly in the subconjunctival space spanning over the limbus where they physically associate with blood vessels. The cytoarchitecture of Hes3 + cells is similar to those previously observed in the adult central nervous system. Furthermore, irradiation reduces the number of Hes3 + cells in the subconjunctival space. In contrast, irradiation strongly promotes the nuclear localization of Hes3 in the ciliary body epithelium. CONCLUSIONS: Our results suggest that a recently identified signal transduction pathway that regulates neural stem cells and glioblastoma cancer stem cells also operates in the ocular surface, ciliary body, and in pterygium.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Ojo/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Pterigion/metabolismo , Factores de Transcripción/metabolismo , Animales , Conjuntiva/efectos de los fármacos , Conjuntiva/metabolismo , Conjuntiva/efectos de la radiación , Ojo/irrigación sanguínea , Ojo/efectos de los fármacos , Ojo/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Terapia Molecular Dirigida , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/efectos de la radiación , Pterigion/tratamiento farmacológico , Pterigion/fisiopatología , Proteínas Represoras
18.
Front Biosci (Landmark Ed) ; 19(4): 718-26, 2014 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-24389215

RESUMEN

Disrupting the regenerative capacity of tumorigenic cells is a major focus in medicine. These regenerative properties are carried by a subpopulation of cells within the tumor, termed cancer stem cells. Current therapies don't effectively tackle the disease suggesting these cells employ yet unidentified molecular mechanisms allowing them to evade targeting. Recent observations in neural stem cells reveal an extraordinary plasticity in the signaling pathways they utilize to grow. These findings are being extended to the cancer stem cell field, illuminating conceptually novel treatment strategies. Tumorigenic cells can make use of distinct, even opposing pathways, including JAK/STAT and the non-canonical STAT3-Ser/Hes3 signaling axis. This plasticity may not be confined to the cancer stem cell population, but may be shared by various cell types within the tumor, blurring the line distinguishing cancer stem cells from other tumor cell types. The implications to anti-cancer medicine are highly significant, since these findings demonstrate that inhibiting one cell growth pathway may actually enhance the activity of alternative ones. Drug discovery programs will also benefit from these concepts.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Serina/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Humanos , Proteínas Represoras
19.
Stem Cell Res Ther ; 5(6): 127, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25688994

RESUMEN

There is a growing interest in the therapeutic utility of compounds derived from Curcuma longa, an herb of the Zingiberaceae family that has been part of traditional medicine for centuries. Recent reports suggest that bioactive compounds isolated from the rhizome of these plants can address two key aspects of brain injury following stroke that must be dealt with for functional recovery to occur: the moderation of neuroinflammation, and the mobilization of endogenous stem cells resident in the nervous system. Defining their mechanism of action remains a question, but emerging evidence may point towards one shared with more classic modulators of neural stem cell proliferation and survival.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cetonas/administración & dosificación , Células-Madre Neurales/fisiología , Fármacos Neuroprotectores/administración & dosificación , Sesquiterpenos/administración & dosificación , Animales , Masculino
20.
J Vis Exp ; (81): e50880, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24300750

RESUMEN

Recent work demonstrates that central nervous system (CNS) regeneration and tumorigenesis involves populations of stem cells (SCs) resident within the adult brain. However, the mechanisms these normally quiescent cells employ to ensure proper functioning of neural networks, as well as their role in recovery from injury and mitigation of neurodegenerative processes are little understood. These cells reside in regions referred to as "niches" that provide a sustaining environment involving modulatory signals from both the vascular and immune systems. The isolation, maintenance, and differentiation of CNS SCs under defined culture conditions which exclude unknown factors, makes them accessible to treatment by pharmacological or genetic means, thus providing insight into their in vivo behavior. Here we offer detailed information on the methods for generating cultures of CNS SCs from distinct regions of the adult brain and approaches to assess their differentiation potential into neurons, astrocytes, and oligodendrocytes in vitro. This technique yields a homogeneous cell population as a monolayer culture that can be visualized to study individual SCs and their progeny. Furthermore, it can be applied across different animal model systems and clinical samples, being used previously to predict regenerative responses in the damaged adult nervous system.


Asunto(s)
Encéfalo/citología , Técnicas Citológicas/métodos , Células-Madre Neurales/citología , Animales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...