Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(24): eabo4271, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704572

RESUMEN

Infection is one of the major causes of mortality in patients with systemic lupus erythematosus (SLE). We previously found that CD38, an ectoenzyme that regulates the production of NAD+, is up-regulated in CD8+ T cells of SLE patients and correlates with the risk of infection. Here, we report that CD38 reduces CD8+ T cell function by negatively affecting mitochondrial fitness through the inhibition of multiple steps of mitophagy, a process that is critical for mitochondria quality control. Using a murine lupus model, we found that administration of a CD38 inhibitor in a CD8+ T cell-targeted manner reinvigorated their effector function, reversed the defects in autophagy and mitochondria, and improved viral clearance. We conclude that CD38 represents a target to mitigate infection rates in people with SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Virosis , Animales , Linfocitos T CD8-positivos/metabolismo , Humanos , Lupus Eritematoso Sistémico/metabolismo , Ratones , Mitocondrias , Mitofagia , Virosis/metabolismo
2.
J Med Chem ; 65(13): 9418-9446, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35762533

RESUMEN

CD38 is one of the major nicotinamide adenine dinucleotide (NAD+)- and nicotinamide adenine dinucleotide phosphate (NADP+)-consuming enzymes in mammals. NAD+, NADP+, and their reduced counterparts are essential coenzymes for numerous enzymatic reactions, including the maintenance of cellular and mitochondrial redox balance. CD38 expression is upregulated in age-associated inflammation as well as numerous metabolic diseases, resulting in cellular and mitochondrial dysfunction. Recent literature studies demonstrate that CD38 is activated upon ischemia/reperfusion (I/R), leading to a depletion of NADP+, which results in endothelial damage and myocardial infarction in the heart. Despite increasing evidence of CD38 involvement in various disease states, relatively few CD38 enzymatic inhibitors have been reported to date. Herein, we describe a CD38 enzymatic inhibitor (MK-0159, IC50 = 3 nM against murine CD38) that inhibits CD38 in in vitro assay. Mice treated with MK-0159 show strong protection from myocardial damage upon cardiac I/R injury compared to those treated with NAD+ precursors (nicotinamide riboside) or the known CD38 inhibitor, 78c.


Asunto(s)
ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Glicoproteínas de Membrana/antagonistas & inhibidores , NAD , Daño por Reperfusión , Animales , Inhibidores Enzimáticos , Isquemia , Mamíferos/metabolismo , Ratones , NAD/metabolismo , NADP/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
3.
Cell Rep ; 27(13): 3902-3915.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242422

RESUMEN

Neutrophils are phenotypically heterogeneous and exert either anti- or pro-metastatic functions. We show that cancer-cell-derived G-CSF is necessary, but not sufficient, to mobilize immature low-density neutrophils (iLDNs) that promote liver metastasis. In contrast, mature high-density neutrophils inhibit the formation of liver metastases. Transcriptomic and metabolomic analyses of high- and low-density neutrophils reveal engagement of numerous metabolic pathways specifically in low-density neutrophils. iLDNs exhibit enhanced global bioenergetic capacity, through their ability to engage mitochondrial-dependent ATP production, and remain capable of executing pro-metastatic neutrophil functions, including NETosis, under nutrient-deprived conditions. We demonstrate that NETosis is an important neutrophil function that promotes breast cancer liver metastasis. iLDNs rely on the catabolism of glutamate and proline to support mitochondrial-dependent metabolism in the absence of glucose, which enables sustained NETosis. These data reveal that distinct pro-metastatic neutrophil populations exhibit a high degree of metabolic flexibility, which facilitates the formation of liver metastases.


Asunto(s)
Neoplasias Hepáticas/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neutrófilos/metabolismo , Animales , Línea Celular Tumoral , Femenino , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Neutrófilos/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-30186229

RESUMEN

Metformin is one of the most commonly prescribed medications for the treatment of type 2 diabetes. Numerous reports have suggested potential anti-cancerous and cancer preventive properties of metformin, although these findings vary depending on the intrinsic properties of the tumor, as well as the systemic physiology of patients. These intriguing studies have led to a renewed interest in metformin use in the oncology setting, and fueled research to unveil its elusive mode of action. It is now appreciated that metformin inhibits complex I of the electron transport chain in mitochondria, causing bioenergetic stress in cancer cells, and rendering them dependent on glycolysis for ATP production. Understanding the mode of action of metformin and the consequences of its use on cancer cell bioenergetics permits the identification of cancer types most susceptible to metformin action. Such knowledge may also shed light on the varying results to metformin usage that have been observed in clinical trials. In this review, we discuss metabolic profiles of cancer cells that are associated with metformin sensitivity, and rationalize combinatorial treatment options. We use the concept of bioenergetic flexibility, which has recently emerged in the field of cancer cell metabolism, to further understand metabolic rearrangements that occur upon metformin treatment. Finally, we advance the notion that metabolic fitness of cancer cells increases during progression to metastatic disease and the emergence of therapeutic resistance. As a result, sophisticated combinatorial approaches that prevent metabolic compensatory mechanisms will be required to effectively manage metastatic disease.

5.
Endocrinology ; 159(5): 2153-2164, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635284

RESUMEN

Given the increasing prevalence of obesity and the metabolic syndrome, identification of intrinsic molecular programs responsible for ensuring fuel homeostasis and preventing metabolic disease is needed. We investigated whether the orphan nuclear receptor estrogen-related receptor α (ERRα), a major regulator of energy metabolism, plays a role in lipid homeostasis and the development of nonalcoholic fatty liver disease (NAFLD) in response to chronic high-fat diet (HFD) consumption and long-term fasting. Systemic ablation of ERRα in mice demonstrated clear beneficial effects for loss of ERRα function in protection from HFD-provoked body weight gain manifested not only from a reduction in white adipose tissue stores but also from an impediment in intrahepatic lipid accumulation. The prevention of HFD-induced NAFLD in ERRα-null mice was underscored by transcriptional repression of de novo lipogenesis, which was upregulated in wild-type mice, a known contributing factor to lipid-stimulated hepatic steatosis. Surprisingly, given these findings, ERRα deficiency had no significant impact on the degree of fasting-induced NAFLD, involving the mobilization of adipocyte triglyceride (TG) stores into the liver. However, the presence of ERRα was essential for acute refeeding-mediated reversal of fasting-induced hepatic TG accretion, underpinned by impaired downregulation of adipose TG lipolysis and reduced hepatic mitochondrial oxidative activity. Taken together, the regulation of lipid handling by ERRα depended on the nutritional state, suggesting that negative modulation of ERRα activity could be envisaged to prevent lipid-induced NAFLD, whereas inducing its activity would be useful to treat and reverse the instilled disease.


Asunto(s)
Dieta Alta en Grasa , Ayuno/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Receptores de Estrógenos/genética , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Lipólisis/genética , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo , Aumento de Peso , Receptor Relacionado con Estrógeno ERRalfa
6.
Cell Rep ; 21(1): 1-9, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978464

RESUMEN

Reactive oxygen species (ROS) are continuously produced as a by-product of mitochondrial metabolism and eliminated via antioxidant systems. Regulation of mitochondrially produced ROS is required for proper cellular function, adaptation to metabolic stress, and bypassing cellular senescence. Here, we report non-canonical regulation of the cellular energy sensor AMP-activated protein kinase (AMPK) by mitochondrial ROS (mROS) that functions to maintain cellular metabolic homeostasis. We demonstrate that mitochondrial ROS are a physiological activator of AMPK and that AMPK activation triggers a PGC-1α-dependent antioxidant response that limits mitochondrial ROS production. Cells lacking AMPK activity display increased mitochondrial ROS levels and undergo premature senescence. Finally, we show that AMPK-PGC-1α-dependent control of mitochondrial ROS regulates HIF-1α stabilization and that mitochondrial ROS promote the Warburg effect in cells lacking AMPK signaling. These data highlight a key function for AMPK in sensing and resolving mitochondrial ROS for stress resistance and maintaining cellular metabolic balance.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Homeostasis/genética , Redes y Vías Metabólicas/genética , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Senescencia Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Cultivo Primario de Células , Estabilidad Proteica , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo , Glutatión Peroxidasa GPX1
7.
Cell Metab ; 26(5): 778-787.e5, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28988825

RESUMEN

Metabolic adaptations play a key role in fueling tumor growth. However, less is known regarding the metabolic changes that promote cancer progression to metastatic disease. Herein, we reveal that breast cancer cells that preferentially metastasize to the lung or bone display relatively high expression of PGC-1α compared with those that metastasize to the liver. PGC-1α promotes breast cancer cell migration and invasion in vitro and augments lung metastasis in vivo. Pro-metastatic capabilities of PGC-1α are linked to enhanced global bioenergetic capacity, facilitating the ability to cope with bioenergetic disruptors like biguanides. Indeed, biguanides fail to mitigate the PGC-1α-dependent lung metastatic phenotype and PGC-1α confers resistance to stepwise increases in metformin concentration. Overall, our results reveal that PGC-1α stimulates bioenergetic potential, which promotes breast cancer metastasis and facilitates adaptation to metabolic drugs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Metabolismo Energético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Hipoglucemiantes/farmacología , Metabolómica , Metformina/farmacología , Ratones , Ratones SCID , Mitocondrias/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
8.
Cell Metab ; 22(4): 577-89, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26365179

RESUMEN

Metabolic reprogramming is a hallmark of cellular transformation, yet little is known about metabolic changes that accompany tumor metastasis. Here we show that primary breast cancer cells display extensive metabolic heterogeneity and engage distinct metabolic programs depending on their site of metastasis. Liver-metastatic breast cancer cells exhibit a unique metabolic program compared to bone- or lung-metastatic cells, characterized by increased conversion of glucose-derived pyruvate into lactate and a concomitant reduction in mitochondrial metabolism. Liver-metastatic cells displayed increased HIF-1α activity and expression of the HIF-1α target Pyruvate dehydrogenase kinase-1 (PDK1). Silencing HIF-1α reversed the glycolytic phenotype of liver-metastatic cells, while PDK1 was specifically required for metabolic adaptation to nutrient limitation and hypoxia. Finally, we demonstrate that PDK1 is required for efficient liver metastasis, and its expression is elevated in liver metastases from breast cancer patients. Our data implicate PDK1 as a key regulator of metabolism and metastatic potential in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Ingeniería Metabólica , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Cromatografía de Gases y Espectrometría de Masas , Glutamina/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Metaboloma , Ratones , Ratones Endogámicos BALB C , Fosforilación Oxidativa , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
9.
Cancer Metab ; 2: 12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184038

RESUMEN

BACKGROUND: Metformin is widely used in the treatment of diabetes, and there is interest in 'repurposing' the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood. METHODS: We performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions. RESULTS: We show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival. CONCLUSIONS: Together, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress.

10.
Metabolites ; 4(2): 166-83, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24957021

RESUMEN

Mitochondria are a focal point in metabolism, given that they play fundamental roles in catabolic, as well as anabolic reactions. Alterations in mitochondrial functions are often studied in whole cells, and metabolomics experiments using 13C-labeled substrates, coupled with mass isotopomer distribution analyses, represent a powerful approach to study global changes in cellular metabolic activities. However, little is known regarding the assessment of metabolic activities in isolated mitochondria using this technology. Studies on isolated mitochondria permit the evaluation of whether changes in cellular metabolic activities are due to modifications in the intrinsic properties of the mitochondria. Here, we present a streamlined approach to accurately determine 13C, as well as 12C enrichments in isolated mitochondria from mammalian tissues or cultured cells by GC/MS. We demonstrate the relevance of this experimental approach by assessing the effects of drugs perturbing mitochondrial functions on the mass isotopomer enrichment of metabolic intermediates. Furthermore, we investigate 13C and 12C enrichments in mitochondria isolated from cancer cells given the emerging role of metabolic alterations in supporting tumor growth. This original method will provide a very sensitive tool to perform metabolomics studies on isolated mitochondria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA