Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 85(4): e22215, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837718

RESUMEN

Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 µM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 µM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antineoplásicos , Apoptosis , Transducción de Señal , Triazoles , Humanos , Femenino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Triazoles/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones Endogámicos BALB C , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Inflamm Res ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789791

RESUMEN

INTRODUCTION: Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/ß-catenin, TGF-ß and mTOR signalling. OBJECTIVE AND METHODS: This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS: Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-ß induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-ß expressions, improved the lung architecture and restored lung functions. CONCLUSION: Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.

3.
RSC Med Chem ; 15(5): 1709-1721, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784465

RESUMEN

A series of Meldrum's acid, 7-azaindole and 1,2,3-triazole hybrids were synthesized and evaluated for their in vitro anticancer activity against five different cancer cell lines viz. MCF-7 (breast cancer), HeLa (cervical cancer), DU-145 (prostate cancer), HepG2 (liver cancer) and K562 (myelogenous leukemia cell). Among the series, compound 6b containing a 4-methyl substitution showed potent activity against HeLa cell line. Cell cycle analysis revealed that compound 6b induced cell cycle arrest at the G2/M phase and induced apoptosis. Apoptotic activity was further confirmed by Hoechst staining and Annexin V-FITC assay. Compound 6b has been found to exhibit higher activity in all four cell lines, with IC50 values of 6.67 ± 0.39 µM, 4.44 ± 0.32 µM, 12.38 ± 0.51 µM and 9.97 ± 0.25 µM against MCF-7, HeLa, DU-145 and HepG2 cell lines respectively. Compounds 6m (9.68 ± 0.10 µM) and 6n (9.52 ± 0.38 µM), which have dimethoxy and trimethoxy substitutions, respectively, have demonstrated significant anticancer activity against HeLa cells compared to the other cells. The molecular docking study of ligand 6b against the crystal structure of EGFR and Mcl-1 scored notable binding energy values and displayed important interactions like H-bond, π-cation and other hydrophobic interactions.

4.
Life Sci ; 346: 122626, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614295

RESUMEN

AIM: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive condition with unknown aetiology that causes the lung parenchyma to scar incessantly, lowering the quality of life and hastening death. In this investigation, we studied the anti-fibrotic activity of Geneticin (a derivative of gentamycin) using in vitro and in vivo models. MAIN METHODS: The TGF-ß-mediated differentiation model was adopted to investigate (fibrotic marker's levels/expression) the anti-fibrotic activity of geneticin (GNC) in in-vitro scenarios (LL29 and DHLF cells). In vivo, the bleomycin (BLM)-induced pulmonary fibrosis model was employed by administering BLM intratracheally. Post 14 days of BLM administration, animals were treated with geneticin (6.25, 12.5, and 25 mg·kg-1) for another 14 days, and their therapeutic effect was investigated using a spectrum of techniques. KEY FINDINGS: RTqPCR and western-blot results revealed that geneticin treatment significantly attenuated the TGF-ß/BLM mediated fibrotic cascade of markers in both in-vitro and in-vivo models respectively. Further, the BLM-induced pulmonary fibrosis model revealed, that geneticin dose-dependently reduced the BLM-induced inflammatory cell infiltrations, and thickness of the alveoli walls, improved the structural distortion of the lung, and aided in improving the survival rate of the rats. Picrosirus and Masson's trichrome staining indicated that geneticin therapy reduced collagen deposition and, as a result, lung functional characteristics were improved as assessed by flexivent. Mechanistic studies have shown that geneticin reduced fibrosis by attenuating the TGF-ß/Smad through modulating the AMPK/SIRT1 signaling. SIGNIFICANCE: These findings suggest that geneticin may be a promising therapeutic agent for the treatment of pulmonary fibrosis in clinical settings.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Bleomicina , Fibrosis Pulmonar , Transducción de Señal , Sirtuina 1 , Factor de Crecimiento Transformador beta , Animales , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ratas , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Bleomicina/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Smad/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
5.
Inflammation ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466531

RESUMEN

Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.

6.
Phytomedicine ; 123: 155182, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952411

RESUMEN

BACKGROUND AND PURPOSE: Chronic liver injury, caused by various aetiologies, causes recurrent tissue damage, culminating in decreased liver regenerative ability and resulting in fibrosis followed by cirrhosis. In this study, the anti-fibrotic activity of Yohimbine hydrochloride (YHC) was investigated using various in vitro models and in vivo models. METHODS: To assess the anti-inflammatory, antioxidant, and anti-fibrotic effects of YHC, lipopolysaccharide or TGF-ß induced differentiation or lipid-induced oxidative-stress models were employed using HLECs, HSC-LX2, and HepG2 cells. Further, thioacetamide (TAA) induced hepatic inflammation/fibrosis models were utilized to validate the YHC's anti-fibrotic activity in rats. RESULTS: Inflammation/differentiation experiments in HLECs and HSC-LX2 revealed that YHC treatment significantly (p < 0.001) mitigated the lipopolysaccharide or TGF-ß induced upregulation of inflammatory and fibrotic markers expression respectively. In addition, YHC dose-dependently reduced the TGF-ß induced migration and palmitic acid-induced oxidative stress in HepG2 cells. Further, TAA administration (5 weeks) in vivo rat model showed increased inflammatory marker levels/expression, oxidative stress, and pathological abnormalities. Additionally, TAA administration (9 weeks) elevated the fibrotic marker expression, collagen deposition in liver tissues, and shortened longevity in rats. Treatment with YHC dose-dependently mitigated the TAA-induced abnormalities in both inflammation and fibrosis models and improved the survival of the rats. Further mechanistic approaches revealed that TAA administration elevated the JNK, Wnt components and ß-catenin expression in hepatic stellate cells and animal tissues. Further treatment with YHC significantly modulated the JNK/Wnt/ß-catenin signaling. Moreover, the ß-catenin nuclear translocation results showed that ß-catenin levels were significantly elevated in the nuclear fraction of TAA control samples and reduced in YHC-treated samples. CONCLUSION: Yohimbine treatment significantly improved inflammation and fibrosis by inhibiting differentiation, oxidative stress, and collagen deposition by partly modulating the JNK/Wnt/ß-catenin pathway. These results might serve as a foundation for proposing yohimbine as a potential lead compound for liver fibrosis.


Asunto(s)
Lipopolisacáridos , beta Catenina , Ratas , Animales , beta Catenina/metabolismo , Yohimbina/farmacología , Yohimbina/metabolismo , Yohimbina/uso terapéutico , Lipopolisacáridos/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Hígado , Estrés Oxidativo , Colágeno/metabolismo , Células Estrelladas Hepáticas , Inflamación/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Tioacetamida
7.
ACS Appl Bio Mater ; 6(11): 4814-4827, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37886889

RESUMEN

Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Lipopolisacáridos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Macrófagos , Inflamación
8.
Nat Prod Res ; : 1-7, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812197

RESUMEN

(+)-Usnic acid (UA), a natural dibenzofuran derivative, abundantly produced by lichens and possess wide number of biomedical applications including antibacterial, anti-inflammatory, anti-oxidant and anticancer activities. In the present study, as series of usnic acid derivatives (3a-3i) were synthesised using Mannich reaction assessed for their antioxidant, α-glucosidase, and anticancer activities. The in vitro antioxidant activity showed that compound 3d displayed potent antioxidant activity by scavenging the activities of DPPH and ABTS+. The compounds 3d and 3e showed potent cytotoxic activity against HepG2 cancer cells by arresting the cell cycle at S phase and regulating the Bax/BcL2 expression and subsequently induce the apoptosis. Overall, the results clearly indicated that (+)-usnic acid derivatives bearing secondary amines are useful scaffolds for the development of drug candidates for treatment of oxidative stress mediated cancer and metabolic disorders.

9.
Life Sci ; 330: 122027, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597767

RESUMEN

AIMS: Acute lung inflammation, particularly acute respiratory distress syndrome (ARDS), is caused by a variety of pathogens including bacteria and viruses. ß-Glucans have been reported to possess both anti-inflammatory and immunomodulatory properties. The current study evaluated the therapeutic effect of ß-glucans on polyinosinic:polycytidylic acid (Poly(I:C)) induced lung inflammation in both hamster and mice models. MAIN METHODS: Poly(I:C)-induced ALI/inflammation models were developed in hamsters (2.5 mg/kg) and mice (2 mg/kg) by delivering the Poly(I:C) intratracheally, and followed with and without ß-glucan administration. After treatment, lung mechanics were assessed and lung tissues were isolated and analyzed for mRNA/protein expression, and histopathological examinations. KEY FINDINGS: Poly(I:C) administration, caused a significant elevation of inflammatory marker's expression in lung tissues and showed abnormal lung mechanics in mice and hamsters. Interestingly, treatment with ß-glucan significantly (p < 0.001) reversed the Poly(I:C)-induced inflammatory events and inflammatory markers expression in both mRNA (IL-6, IL-1ß, TNF-α, CCL2 and CCL7) and protein levels (TNF-α, CD68, myeloperoxidase, neutrophil elastase, MUC-5Ac and iNOS). Lung functional assays revealed that ß-glucan treatment significantly improved lung mechanics. Histopathological analysis showed that ß-glucan treatment significantly attenuated the Poly(I:C) induced inflammatory cell infiltration, injury and goblet cell population in lung tissues. Consistent with these findings, ß-glucan treatment markedly reduced the number of neutrophils and macrophages in lung tissues. Our findings further demonstrated that ß-glucan could reduce inflammation by suppressing the MAPK pathway. SIGNIFICANCE: These results suggested that ß-glucan may attenuate the pathogenic effects of Poly(I:C)-induced ALI/ARDS via modulating the MAPK pathway, indicating ß-glucan as a possible therapeutic agent for the treatment of viral-pulmonary inflammation/injury.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Síndrome de Dificultad Respiratoria , Virosis , Cricetinae , Animales , Ratones , Factor de Necrosis Tumoral alfa , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Caliciformes
10.
Bioorg Chem ; 139: 106698, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37418784

RESUMEN

Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.

11.
ChemMedChem ; 18(16): e202300097, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37306531

RESUMEN

Survivin has been shown to be widely expressed in most tumor cells, including lung and breast cancers. Due to limited siRNA delivery, it is more challenging to target survivin using knockdown-based techniques. Designing and developing new, bifunctional chemical molecules with both selective anti-proliferative activity and effective siRNA transfection capabilities by targeting a particular gene is important to treat aggressive tumors like triple-negative breast tumors (TNBC). The cationic lipids deliver small interfering RNA (siRNA) and also display inherent anti-cancer activities; therefore, cationic lipid therapies have become very popular for treating malignant cancers. In the current study, we attempted to synthesize a series of acid-containing cationic lipids, anthranilic acid-containing mef lipids, and indoleacetic acid-containing etodo lipids etc. Further, we elucidated their bi-functional activity for their anticancer activity and survivin siRNA-mediated anti-cancer activity. Our results showed that lipoplexes with siRNA-Etodo: Dotap (ED) and siRNA-Mef: Dotap (MD) exhibited homogeneous particle size and positive zeta potential. Further, biological investigations resulted in enhanced survivin siRNA delivery with high stability, improved transfection efficiency, and anti-cancer activity. Additionally, our findings showed that survivin siRNA lipoplexes (ED and MD) in A549 cells and 4T1 cells exhibited stronger survivin knockdown, enhanced apoptosis, and G1 or G2/M phase arrest in both cell types. In vivo results revealed that treatment with survivin complexed lipoplexes significantly reduced tumor growth and tumor weight compared to control. Thus, our novel quaternary amine-based liposome formulations are predicted to open up new possibilities in the development of a simple and widely utilized platform for siRNA delivery and anti-cancer activities.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Survivin/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/química , Neoplasias de la Mama/tratamiento farmacológico , Liposomas/química , Ácidos Grasos Monoinsaturados/química , Transfección , Pulmón/metabolismo , Línea Celular Tumoral
12.
Eur J Pharmacol ; 953: 175820, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245857

RESUMEN

In idiopathic pulmonary fibrosis (IPF), excessive collagen deposition predisposes to irreversible lung function decline, respiratory failure, and ultimately death. Due to the limited therapeutic efficacy of FDA-approved medications, novel drugs are warranted for better treatment outcomes. Dehydrozingerone (DHZ) is an analogue of curcumin that has been investigated against pulmonary fibrosis using a bleomycin-induced pulmonary fibrosis model in rats. In in vitro, TGF-ß-induced differentiation models (using NHLF, LL29, DHLF and A549 cells) were adopted to assess fibrotic markers expression and explored the mechanism of action. DHZ administration attenuated the bleomycin-induced elevation of lung index, inflammatory cell infiltrations, and hydroxyproline levels in lung tissues. Furthermore, treatment with DHZ mitigated the bleomycin-mediated elevation of extracellular matrix (ECM), epithelial-to-mesenchymal-transition (EMT), and collagen deposition markers and improved lung mechanics. In addition, treatment with DHZ significantly suppressed the BLM-induced apoptosis and rescued the BLM-induced pathological abnormalities in lung tissues. In vitro assays revealed that DHZ suppressed the expression of TGF-ß-elevated collagen deposition, EMT and ECM markers in both mRNA/protein levels. Our findings showed that DHZ has anti-fibrotic effect against pulmonary fibrosis by modulating Wnt/ß-catenin signaling, suggesting that DHZ may serve as a potential treatment option for IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis Pulmonar Idiopática , Ratas , Animales , beta Catenina/metabolismo , Pulmón , Fibrosis Pulmonar Idiopática/patología , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Colágeno/metabolismo , Bleomicina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
13.
J Nutr Biochem ; 116: 109294, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948431

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder that severely impairs lung function, by increasing lung stiffness. Sesamol, a phenolic Phyto-molecule isolated from sesame seeds, possess a rich source of protein and is known to have extensive nutritional and health effects. Here we investigated the effect of sesamol on TGF-ß/periostin-induced fibroblast differentiation in in vitro and bleomycin-induced pulmonary fibrosis in an in vivo model. Our results demonstrated that activation of (DHLF, LL29, NHLF and A549) cells with TGF-ß, elevates the epithelial to mesenchymal transition, extracellular matrix, and collagen deposition and periostin signaling marker's expression, further treatment with sesamol attenuated these markers significantly. In addition, sesamol treatment improved the TGF-ß-induced contraction and migration of cells. Mechanistic studies showed that activation of IPF cells with periostin increased the TGF-ß signaling and treatment with sesamol significantly abrogated the periostin-induced TGF-ß activation and its downstream fibrotic marker's expression. In in vivo, sesamol treatment attenuated the lung inflammation, infiltration of cells, wall thickening and the formation of fibrous bands significantly in BLM-induced fibrosis rats. Molecular studies revealed that sesamol treatment reduced the bleomycin-induced fibrotic, inflammatory, apoptotic marker's expression by modulating the TGF-ß/periostin crosstalk signaling in a dose-dependent manner. Further, treatment with sesamol dramatically improved lung function and decreased mortality. Our study first time reports the sesamol's inhibitory effects on periostin signalling. Collectively, our study demonstrated that periostin and TGF-ß seem to work in a positive-feedback loop, inducing the other, therefore, targeting TGF-ß/periostin signaling may provide a better therapeutic approach against IPF and other fibrotic disorders.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratas , Bleomicina/toxicidad , Transición Epitelial-Mesenquimal , Fibroblastos/metabolismo , Pulmón , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
Inflammation ; 46(3): 787-807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36622573

RESUMEN

Ulcerative colitis (UC) is an intestinal inflammatory disease characterised by the loss of intestinal crypts, edema, mucosal ulceration, and infiltration of inflammatory cells in the mucosa. The current study aimed to investigate the protective and therapeutic effects of sinigrin and underlying mechanisms in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis. DSS-induced colitis models were used to demonstrate sinigrin's therapeutic/protective action. Mice were orally administered with sinigrin (15 mg/kg or 30 mg/kg) for a period of 12 days in both prophylactic and therapeutic models. Animal weights, stool consistency, and bleeding parameters were measured throughout the experimental period. After the experimental period, colon lengths were measured, and colon tissues were harvested to determine the levels of oxidative stress-inducing factors (nitrates and MDA levels) and anti-oxidant components (GSH, SOD, and catalase). Furthermore, gene expression analysis, IL-17 levels, and inflammatory marker expressions were measured using RT-qPCR, ELISA, and immunohistochemical methods respectively. Furthermore, histopathological observations and elucidation of the mechanism of action were determined using H&E analysis and Western blot analysis. Sinigrin treatment (in both prophylactic and therapeutic models) significantly mitigated the DSS-induced body weight loss, attenuated the colon length shrinkage, and improved the disease index score (p < 0.001). Further results revealed that sinigrin's protective/therapeutic effect is associated with a significant attenuation of pro­inflammatory cytokine production (p < 0.001), reversing the anti-oxidant enzyme levels (p < 0.001) and substantial improvement (2 folds) of the disruption of the colonic morphology in colon tissues compared to DSS control. Immunohistochemical analysis showed that sinigrin treatment remarkably reduced the DSS-induced myeloperoxidase, neutrophil elastase, and CD68 expression in colon tissues. Additionally, sinigrin successfully abrogated the DSS-induced IL-17 levels (p < 0.001) and improved the colonic barrier in colon tissues. Overall, these results demonstrated that sinigrin exerts protective and therapeutic effects on DSS­induced colitis, by enhancing the anti-oxidant enzymes and suppressing the intestinal inflammatory cascade of markers by regulating the MAPK pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sulfato de Dextran/toxicidad , Interleucina-17 , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
15.
Nat Prod Res ; : 1-8, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36691946

RESUMEN

Lupeol is one of the most important metabolite in the class of terpenoids and possess excellent anticancer, anti-inflammatory, anti-diabetic activities etc. In the present study, the different thiazoles and oxazoles bearing lupeol derivatives were prepared to enhance their biological activity. Initially, the in vitro cytotoxic activity results showed that the synthesized lupeol derivatives (9a-9j and 10a-10e) showed significant activity against various cancer cells and the compounds 9h and 10b exhibited excellent activity against CAL27 cells. Further, these compounds 9h and 10b arrest the cell cycle at S phase and induce the late apoptosis in CAL27 cells by downregulating the BcL2 and vimentin expression and upregulating the Bax gene expression. Moreover, the lupeol derivatives showed dose-dependent anti-inflammatory activity by inhibiting the secretion of IL-6 cytokines in LPS-induced Raw 264.7 cells. Together, these results clearly indicated that the thiazoles and oxazoles bearing lupeol derivatives can used as chemotherapeutic drugs against cancer and inflammatory diseases.

16.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662401

RESUMEN

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Asunto(s)
COVID-19 , Gymnema sylvestre , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Ratas , Animales , FN-kappa B/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Gymnema sylvestre/metabolismo , Especies Reactivas de Oxígeno , Lesión Pulmonar/tratamiento farmacológico , Lipopolisacáridos/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas
17.
Nat Prod Res ; 37(15): 2568-2574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35343322

RESUMEN

Piscidinol A (1), a major compound isolated from Aphanamixis polystachya, showed modest anticancer activity against cancer cell lines. Subsequently, a series of analogues were synthesised by modification of the key structural functionalities of this high yield natural product and assessed for their anticancer potential against various cancer cell lines. Among the tested derivatives, the compounds 6e and 6i are significantly reduced the cell viability at 5.38 and 5.02 µM against DU145 prostate cancer cells, respectively. Additionally, both the compounds arrested the cell cycle at S phase and induced the late apoptosis in DU145 cells. Together, the results demonstrated that the compounds 6e and 6i could be a promising lead for the development of anticancer agents against DU145 and well worth further investigation aiming to generate potential anticancer agents.


Asunto(s)
Antineoplásicos , Masculino , Humanos , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
18.
Eur J Pharmacol ; 937: 175366, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375494

RESUMEN

Hepatic fibrosis is a progressive consequence of injury to the liver cells. Liver fibrosis causes hepatic dysfunction and also plays a key role in the pathogenesis of other chronic ailments. Dehydrozingerone (DHZ) is a half-structural analogue of curcumin and is known to have several therapeutic benefits. However, the impact of DHZ on liver fibrosis was not investigated. The current investigation attempted to determine the anti-fibrotic effect of DHZ against thioacetamide-induced liver fibrosis in rats and TGF-ß-induced differentiation in human HSC-LX2 cells and to uncover the possible mechanisms. In in-vivo, DHZ significantly reduced the TAA-induced liver index and ameliorated the liver functional parameters. TAA elevated the fibrotic marker's expression in TAA control, on the other hand, DHZ treatment significantly mitigated the same in mRNA and protein levels. Additionally, these findings were supported by histological investigations and immunohistochemistry studies of the fibrotic marker's expressions. DHZ treatment effectively reduced oxidative stress by increasing catalase activity and decreased the expression of inflammatory markers (myeloperoxidase and neutrophil-elastase) in liver tissues. Additionally, collagen staining and histological findings confirmed that DHZ administration significantly reduced TAA induced pathological deformities and elevated collagen levels. In-vitro results showed that TGF-ß-induced differentiation was suppressed by DHZ treatment in a dose-dependent manner. Mechanistic approaches in HSC-LX2 and liver tissues revealed that DHZ treatment mitigated fibrosis by modulating the MAPK-pathway. Overall, these results show that DHZ exhibited anti-fibrotic action by reducing fibrotic markers and their activities through regulation of the MAPK-pathway, suggesting that DHZ may be a promising therapeutic molecule for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Tioacetamida , Ratas , Humanos , Animales , Tioacetamida/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Biomarcadores/metabolismo , Colágeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
Drug Dev Ind Pharm ; 48(8): 384-396, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36047536

RESUMEN

OBJECTIVE: The main objective is to formulate solid lipid nanoparticles conjugated with cyclic RGDfk peptide encapsulated with gemcitabine hydrochloride drug for targeting breast cancer. SIGNIFICANCE: The hydrophilic nature of gemcitabine hampers passive transport by cell membrane permeation that may lead to drug resistance as it has to enter the cells via nucleoside transporters. The art of encapsulating the drug in a nanovesicle and then anchoring it with a targeting ligand is one of the present areas of research in cancer chemotherapy. METHODS: In this study, solid lipid nanoparticles were prepared by double emulsification and solvent evaporation method. Cyclic RGDfk and gemcitabine hydrochloride were used as targeting ligands and chemotherapeutic drugs, respectively, for targeting breast cancer. The prepared nanoparticles were evaluated for in vitro and in vivo performance to showcase the targeting efficiency and therapeutic benefits of the gemcitabine-loaded ligand conjugated nanoparticles. RESULTS: When compared with gemcitabine (GEM) and GEM loaded nanoparticles (GSLN), the ligand conjugated GEM nanoparticles (cGSLN) showed superior cytotoxicity, apoptosis, and inhibition of 3D multicellular spheroids in human breast cancer cells (MDA MB 231). The in vivo tumor regression studies in orthotopic breast cancer induced Balb/C mice showed that cGSLN displayed superior tumor suppression and also the targeting potential of the cGSLN toward induced breast cancer. CONCLUSION: Prepared nanoformulations showed enhanced anticancer activity in both 2D and 3D cell culture models along with antitumor efficacy in orthotopic breast cancer mouse models.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Ratones , Animales , Femenino , Integrina beta3/uso terapéutico , Integrina alfaV , Ligandos , Línea Celular Tumoral , Neoplasias de la Mama/patología , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Gemcitabina
20.
Nat Prod Res ; : 1-7, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083601

RESUMEN

In continuation of our research program aimed at the development of new natural product-based anticancer agents, a series of lupeol derivatives (5a-5k and 6a-6i) were prepared with the introduction of aryl functionalities and amino acids at C-3 position. All the synthesised derivatives were assessed for in vitro anticancer activity against four human cancer cell lines using MTT assay. Interestingly, the compounds 5j, 5k, and 6 g showed potent activity against MCF7 cells as compared with the parent compound. Further, the flowcytometry analysis revealed that the 5j,5k, and 6 g arrest the cells at the G2/M phase and induce the early apoptosis in MCF7 cells. In addition, the selected compounds inhibit the BcL2 expression and increase the Bax protein expression in MCF7 cells. Overall, these results indicated that the lupeol derivatives could serve as a promising launch point for the development of anticancer agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...