Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32532876

RESUMEN

Standardization of the use of next-generation sequencing for the diagnosis of rare neurological disorders has made it possible to detect potential disease-causing genetic variations, including de novo variants. However, the lack of a clear pathogenic relevance of gene variants poses a critical limitation for translating this genetic information into clinical practice, increasing the necessity to perform functional assays. Genetic screening is currently recommended in the guidelines for diagnosis of hypomyelinating leukodystrophies (HLDs). HLDs represent a group of rare heterogeneous disorders that interfere with the myelination of the neurons in the central nervous system. One of the HLD-related genes is HSPD1, encoding the mitochondrial chaperone heat shock protein 60 (HSP60), which functions as folding machinery for the mitochondrial proteins imported into the mitochondrial matrix space. Disease-causing HSPD1 variants have been associated with an autosomal recessive form of fatal hypomyelinating leukodystrophy (HLD4, MitCHAP60 disease; MIM #612233) and an autosomal dominant form of spastic paraplegia, type 13 (SPG13; MIM #605280). In 2018, a de novo HSPD1 variant was reported in a patient with HLD. Here, we present another case carrying the same heterozygous de novo variation in the HSPD1 gene (c.139T > G, p.Leu47Val) associated with an HLD phenotype. Our molecular studies show that the variant HSP60 protein is stably present in the patient's fibroblasts, and functional assays demonstrate that the variant protein lacks in vivo function, thus confirming its disease association. We conclude that de novo variations of the HSPD1 gene should be considered as potentially disease-causing in the diagnosis and pathogenesis of the HLDs.


Asunto(s)
Chaperonina 60/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Adulto , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Chaperonina 10/genética , Chaperonina 60/química , Niño , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación , Proteínas Gestacionales/genética , Conformación Proteica , Recurrencia , Relación Estructura-Actividad , Factores Supresores Inmunológicos/genética
2.
Genetics ; 190(3): 989-1000, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22234860

RESUMEN

Bacteriophages are the most abundant biological entities in our biosphere, characterized by their hyperplasticity, mosaic composition, and the many unknown functions (ORFans) encoded by their immense genetic repertoire. These genes are potentially maintained by the bacteriophage to allow efficient propagation on hosts encountered in nature. To test this hypothesis, we devised a selection to identify bacteriophage-encoded gene(s) that modulate the host Escherichia coli GroEL/GroES chaperone machine, which is essential for the folding of certain host and bacteriophage proteins. As a result, we identified the bacteriophage RB69 gene 39.2, of previously unknown function and showed that homologs of 39.2 in bacteriophages T4, RB43, and RB49 similarly modulate GroEL/GroES. Production of wild-type bacteriophage T4 Gp39.2, a 58-amino-acid protein, (a) enables diverse bacteriophages to plaque on the otherwise nonpermissive groES or groEL mutant hosts in an allele-specific manner, (b) suppresses the temperature-sensitive phenotype of both groES and groEL mutants, (c) suppresses the defective UV-induced PolV function (UmuCD) of the groEL44 mutant, and (d) is lethal to the host when overproduced. Finally, as proof of principle that Gp39.2 is essential for bacteriophage growth on certain bacterial hosts, we constructed a T4 39.2 deletion strain and showed that, unlike the isogenic wild-type parent, it is incapable of propagating on certain groEL mutant hosts. We propose a model of how Gp39.2 modulates GroES/GroEL function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Chaperonina 60/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Chaperonina 60/genética , ADN Polimerasa Dirigida por ADN/química , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/química , Expresión Génica , Orden Génico , Datos de Secuencia Molecular , Mutación , Plásmidos/genética , Pliegue de Proteína , Temperatura
3.
Am J Hum Genet ; 83(1): 30-42, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18571143

RESUMEN

Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration.


Asunto(s)
Chaperonina 60/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/genética , Secuencia de Aminoácidos , Estudios de Casos y Controles , Chaperonina 60/análisis , Chaperonina 60/química , Chaperonina 60/metabolismo , Cromosomas Humanos Par 2 , Consanguinidad , Secuencia Conservada , Análisis Mutacional de ADN , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Genes Letales , Genes Recesivos , Ligamiento Genético , Marcadores Genéticos , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/fisiopatología , Humanos , Lactante , Masculino , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Linaje , Mapeo Físico de Cromosoma , Polimorfismo de Longitud del Fragmento de Restricción , Radiografía , Homología de Secuencia de Aminoácido
4.
J Biol Chem ; 283(23): 15694-700, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18400758

RESUMEN

We have previously reported the association of a mutation (c.292G > A/p.V98I) in the human HSPD1 gene that encodes the mitochondrial Hsp60 chaperonin with a dominantly inherited form of hereditary spastic paraplegia. Here, we show that the purified Hsp60-(p.V98I) chaperonin displays decreased ATPase activity and exhibits a strongly reduced capacity to promote folding of denatured malate dehydrogenase in vitro. To test its in vivo functions, we engineered a bacterial model system that lacks the endogenous chaperonin genes and harbors two plasmids carrying differentially inducible operons with human Hsp10 and wild-type Hsp60 or Hsp10 and Hsp60-(p.V98I), respectively. Ten hours after shutdown of the wild-type chaperonin operon and induction of the Hsp60-(p.V98I)/Hsp10 mutant operon, bacterial cell growth was strongly inhibited. No globally increased protein aggregation was observed, and microarray analyses showed that a number of genes involved in metabolic pathways, some of which are essential for robust aerobic growth, were strongly up-regulated in Hsp60-(p.V98I)-expressing bacteria, suggesting that the growth arrest was caused by defective folding of some essential proteins. Co-expression of Hsp60-(p.V98I) and wild-type Hsp60 exerted a dominant negative effect only when the chaperonin genes were expressed at relatively low levels. Based on our in vivo and in vitro data, we propose that the major effect of heterozygosity for the Hsp60-(p.V98I) mutation is a moderately decreased activity of chaperonin complexes composed of mixed wild-type and Hsp60-(p.V98I) mutant subunits.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Chaperoninas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Paraplejía Espástica Hereditaria/metabolismo , Adenosina Trifosfatasas/genética , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60 , Chaperoninas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heterocigoto , Humanos , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales , Modelos Biológicos , Operón/genética , Pliegue de Proteína , Paraplejía Espástica Hereditaria/genética
5.
J Neurol ; 254(7): 897-900, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17420924

RESUMEN

A mutation in the HSPD1 gene has previously been associated with an autosomal dominant form of spastic paraplegia in a French family. HSPD1 encodes heat shock protein 60, a molecular chaperone involved in folding and quality control of mitochondrial proteins. In the present work we have investigated 23 Danish index patients with hereditary spastic paraplegia (HSP) for mutations in the HSPD1 gene. One patient was found to be heterozygous for a c.1381C > G missense mutation encoding the mutant heat shock protein 60 p.Gln461Glu. The mutation was also present in two unaffected brothers, but absent in 400 unrelated Danish individuals. We found that the function of the p.Gln461Glu heat shock protein 60 was mildly compromised. The c.1381C > G mutation likely represents a novel low-penetrance HSP allele.


Asunto(s)
Chaperoninas/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense/genética , Paraplejía Espástica Hereditaria/genética , Anciano , Chaperonina 60 , Dinamarca , Salud de la Familia , Femenino , Ácido Glutámico/genética , Glutamina/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales
6.
Proc Natl Acad Sci U S A ; 104(9): 3101-6, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17360615

RESUMEN

Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30 degrees C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Frío , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Fenotipo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Mutación/genética , Isomerasa de Peptidilprolil/genética , Ribosomas/metabolismo
7.
J Hum Genet ; 52(1): 56-65, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17072495

RESUMEN

Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for variations in the HSPD1 and HSPE1 genes encoding the mitochondrial Hsp60/Hsp10 chaperone complex: two patients with multiple mitochondrial enzyme deficiency, 61 sudden infant death syndrome cases (MIM: #272120), and 60 patients presenting with ethylmalonic aciduria carrying non-synonymous susceptibility variations in the ACADS gene (MIM: *606885 and #201470). Besides previously reported variations we detected six novel variations: two in the bidirectional promoter region, and one synonymous and three non-synonymous variations in the HSPD1 coding region. One of the non-synonymous variations was polymorphic in patient and control samples, and the rare variations were each only found in single patients and absent in 100 control chromosomes. Functional investigation of the effects of the variations in the promoter region and the non-synonymous variations in the coding region indicated that none of them had a significant impact. Taken together, our data argue against the notion that the chaperonin genes play a major role in the investigated diseases. However, the described variations may represent genetic modifiers with subtle effects.


Asunto(s)
Chaperonina 10/genética , Chaperonina 60/genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/genética , Polimorfismo de Nucleótido Simple , Butiril-CoA Deshidrogenasa/genética , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Malonatos/metabolismo , Malonatos/orina , Regiones Promotoras Genéticas , Muerte Súbita del Lactante/genética
8.
J Biol Chem ; 279(2): 1090-9, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14576149

RESUMEN

In all three kingdoms of life chaperonins assist the folding of a range of newly synthesized proteins. As shown recently, Archaea of the genus Methanosarcina contain both group I (GroEL/GroES) and group II (thermosome) chaperonins in the cytosol. Here we report on a detailed functional analysis of the archaeal GroEL/GroES system of Methanosarcina mazei (Mm) in comparison to its bacterial counterpart from Escherichia coli (Ec). We find that the groESgroEL operon of M. mazei is unable to functionally replace groESgroEL in E. coli. However, the MmGroES protein can largely complement a mutant EcGroES protein in vivo. The ATPase rate of MmGroEL is very low and the dissociation of MmGroES from MmGroEL is 15 times slower than for the EcGroEL/GroES system. This slow ATPase cycle results in a prolonged enclosure time for model substrate proteins, such as rhodanese, in the MmGroEL:GroES folding cage before their release into the medium. Interestingly, optimal functionality of MmGroEL/GroES and its ability to encapsulate larger proteins, such as malate dehydrogenase, requires the presence of ammonium sulfate in vitro. In the absence of ammonium sulfate, malate dehydrogenase fails to be encapsulated by GroES and rather cycles on and off the GroEL trans ring in a non-productive reaction. These results indicate that the archaeal GroEL/GroES system has preserved the basic encapsulation mechanism of bacterial GroEL and suggest that it has adjusted the length of its reaction cycle to the slower growth rates of Archaea. Additionally, the release of only the folded protein from the GroEL/GroES cage may prevent adverse interactions of the GroEL substrates with the thermosome, which is not normally located within the same compartment.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Adenosina Trifosfatasas/química , Sulfato de Amonio/química , Archaea/metabolismo , Bacteriófagos/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Chaperoninas/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Prueba de Complementación Genética , Malato Deshidrogenasa/química , Methanosarcina/metabolismo , Mutación , Unión Proteica , Pliegue de Proteína , Resonancia por Plasmón de Superficie , Tiosulfato Azufretransferasa/química , Factores de Tiempo
9.
EMBO J ; 22(7): 1461-6, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12660153

RESUMEN

The Escherichia coli DsbA protein is the major oxidative catalyst in the periplasm. Dartigalongue et al. (EMBO J., 19, 5980-5988, 2000) reported that null mutations in the ompL gene of E.coli fully suppress all phenotypes associated with dsbA mutants, i.e. sensitivity to the reducing agent dithiothreitol (DTT) and the antibiotic benzylpenicillin, lack of motility, reduced alkaline phosphatase activity and mucoidy. They showed that OmpL is a porin and hypothesized that ompL null mutations exert their suppressive effect by preventing efflux of a putative oxidizing-reducing compound into the medium. We have repeated these experiments using two different ompL null alleles in at least three different E.coli K-12 genetic backgrounds and have failed to reproduce any of the ompL suppressive effects noted above. Also, we show that, contrary to earlier results, ompL null mutations alone do not result in partial DTT sensitivity or partial motility, nor do they appreciably affect bacterial growth rates or block propagation of the male-specific bacteriophage M13. Thus, our findings clearly demonstrate that ompL plays no perceptible role in modulating redox potential in the periplasm of E.coli.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Periplasma/metabolismo , Porinas/fisiología , Fosfatasa Alcalina/metabolismo , Secuencia de Bases , Cartilla de ADN , Ditiotreitol/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Genes Bacterianos , Mutación , Oxidación-Reducción , Periplasma/efectos de los fármacos , Periplasma/enzimología , Porinas/genética , Proteína Disulfuro Isomerasas/genética
10.
Am J Hum Genet ; 70(5): 1328-32, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11898127

RESUMEN

SPG13, an autosomal dominant form of pure hereditary spastic paraplegia, was recently mapped to chromosome 2q24-34 in a French family. Here we present genetic data indicating that SPG13 is associated with a mutation, in the gene encoding the human mitochondrial chaperonin Hsp60, that results in the V72I substitution. A complementation assay showed that wild-type HSP60 (also known as "HSPD1"), but not HSP60 (V72I), together with the co-chaperonin HSP10 (also known as "HSPE1"), can support growth of Escherichia coli cells in which the homologous chromosomal groESgroEL chaperonin genes have been deleted. Taken together, our data strongly indicate that the V72I variation is the first disease-causing mutation that has been identified in HSP60.


Asunto(s)
Chaperonina 60/genética , Mapeo Cromosómico , Proteínas Mitocondriales/genética , Mutación/genética , Paraplejía Espástica Hereditaria/genética , Alelos , Western Blotting , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Prueba de Complementación Genética , Humanos , Masculino , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Operón/genética , Linaje , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA