Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(29): 25881-25890, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910178

RESUMEN

A series of air-stable mononuclear octacoordinate Ln(III) complexes, [(L)Ln(TPPO)3]OTf (Ln = Y (1·Y); Gd (1·Gd); Tb (1·Tb); Dy (1·Dy); Ho (1·Ho); and Er (1·Er)) and [(L)Ln(TPPO)(NO3)] (Ln = Y (2·Y) and Dy (2·Dy)), are synthesized employing a rigid N3O2-pentadentate chelating ligand as the basis ligand and meridional ancillary ligands (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone, TPPO = triphenylphosphine oxide, and OTf- = trifluoromethanesulfonate). All the complexes are synthesized under aerobic conditions and characterized comprehensively by spectroscopic and X-ray crystallographic techniques. Magnetic property investigation on the polycrystalline solid samples of 1·Ln (Ln = Gd, Tb, Dy, Ho, and Er) and 2·Dy are reported. A field-induced single-molecule magnet behavior was observed for the Dy derivatives. 1·Dy exhibits the highest effective energy barrier of magnetization reversal, U eff/k B = 47 K under H dc = 1 kOe among the complexes presented herein.

2.
Angew Chem Int Ed Engl ; 61(28): e202202637, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35362643

RESUMEN

Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.

3.
RSC Adv ; 12(8): 4501-4509, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35425514

RESUMEN

Herein, we report the synthesis, characterisation, and application of three aluminium alkyl complexes, [κ2-{NHIRP(Ph)NDipp}AlMe2] (R = Dipp (2a), Mes (2b); tBu (2c), Dipp = 2,6-diisopropylphenyl, Mes = mesityl, and tBu = tert-butyl), supported by unsymmetrical imino-phosphanamide [NHIRP(Ph)NDipp]- [R = Dipp (1a), Mes (1b), tBu (1c)] ligands as molecular precursors for the catalytic synthesis of guanidines using carbodiimides and primary amines. All the imino-phosphanamide ligands 1a, 1b and 1c were prepared in good yield from the corresponding N-heterocyclic imine (NHI) with phenylchloro-2,6-diisopropylphenylphosphanamine, PhP(Cl)NHDipp. The aluminium alkyl complexes 2a, 2b and 2c were obtained in good yield upon completion of the reaction between trimethyl aluminium and the protic ligands 1a, 1b and 1c in a 1 : 1 molar ratio in toluene via the elimination of methane, respectively. The molecular structures of the protic ligands 1b and 1c and the aluminium complexes 2a, 2b and 2c were established via single-crystal X-ray diffraction analysis. Complexes 2a, 2b and 2c were tested as pre-catalysts for the hydroamination/guanylation reaction of carbodiimides with aryl amines to afford guanidines at ambient temperature. All the aluminium complexes exhibited a high conversion with 1.5 mol% catalyst loading and broad substrate scope with a wide functional group tolerance during the guanylation reaction. We also proposed the most plausible mechanism, involving the formation of catalytically active three-coordinate Al species as the active pre-catalyst.

4.
J Org Chem ; 86(18): 12683-12692, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34473501

RESUMEN

The systematic combination of N-heterocyclic olefins (NHOs) with fluoroarenes resulted in twisted push-pull alkenes. These alkenes carry electron-donating cyclicdiamino substituents and two electron-withdrawing fluoroaryl substituents in the geminal positions. The synthetic method can be extended to a variety of substituted push-pull alkenes by varying the NHO as well as the fluoroarenes. Solid-state molecular structures of these molecules reveal a notable elongation of the central C-C bond and a twisted geometry in the alkene motif. Absorption properties were investigated with UV-vis spectroscopy. The redox properties of the twisted push-pull alkenes were probed with electrochemistry as well as UV-vis/NIR and EPR spectroelectrochemistry, while the electronic structures were computationally evaluated and validated.

5.
J Org Chem ; 86(3): 2224-2234, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33290079

RESUMEN

An imino-phosphanamide ligand, [NHIiPr2Me2P(Ph)NH-2,6-iPr2C6H3] (LH), containing two different N-substituents was prepared by the direct reaction of the lithium salt of N-heterocyclic imine (NHI) with phenylchloro-2,6-diisopropylphenyl phosphanamine, PhP(Cl)NH-2,6-iPr2-C6H3. Reaction of LH with Y(N(SiMe3)2)3 afforded the heteroleptic complex, [{L}Y(N(SiMe3)2)2] (1), by elimination of HN(SiMe3)2. Compound 1 was characterized by multinuclear NMR and X-ray crystallography. In the complex, the Y(III) center was found to be tetracoordinate in a distorted tetrahedral geometry. The ligand, imino-phosphanamidinate, [L]-, functions in a chelating manner, and its coordination to Y(III) results in a distorted 4-membered YPN2 ring. As a proof of principle of its activity, 1 was used as a precatalyst for the hydroboration of various aldehydes and ketones using HBpin as the hydrogen source. The hydroboration reaction was rapid and clean even with low catalyst loadings (0.01-0.1 mol %). In addition, a very good functional group tolerance was observed in these reactions.

6.
Chemistry ; 26(27): 5951-5955, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32027063

RESUMEN

A N-heterocyclic olefin (NHO), a terminal alkene selectively activates aromatic C-F bonds without the need of any additional catalyst. As a result, a straightforward methodology was developed for the formation of different fluoroaryl-substituted alkenes in which the central carbon-carbon double bond is in a twisted geometry.

7.
Dalton Trans ; 44(3): 955-65, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25407563

RESUMEN

We report an amidinato ligand-supported series of magnesium complexes obtained from the insertion of a magnesium-carbon bond into a carbon-nitrogen double bond of different carbodiimides and α-diimine ligands. The magnesium complexes [Mg(CH2Ph){CyN[double bond, length as m-dash]C(CH2Ph)NCy}]2 (), [Mg(CH2Ph){(i)PrN[double bond, length as m-dash]C(CH2Ph)N(i)Pr}]2 () and the homoleptic [Mg{(t)BuN[double bond, length as m-dash]C(CH2Ph)N(t)Bu}2] () (Cy = cyclohexyl, (i)Pr = isopropyl, (t)Bu = tert-butyl) were prepared by the reaction of dibenzyl magnesium [Mg(CH2Ph)2(Et2O)2] with the respective carbodiimides either in 1 : 1 or 1 : 2 molar ratio in toluene. The analogous reaction of [Mg(CH2Ph)2(Et2O)2] with the N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (Dipp2DAD) ligand afforded the corresponding homoleptic magnesium complex [Mg{DippN[double bond, length as m-dash]C(CH2Ph)CH2NDipp}2] () (Dipp = 2,6 diisopropylphenyl) in good yield. The solid-state structures of magnesium complexes were confirmed by single-crystal X-ray diffraction analysis. It was observed that in each case, a magnesium-carbon bond was inserted into the carbon-nitrogen double bond of either carbodiimides or Dipp2DAD resulting in a monoanionic amido-imino ligand. In a further reaction between and N-aryliminopyrrolyl ligand 2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C4H3NH (ImpDipp-H) in 1 : 2 molar ratio, a new magnesium complex [Mg(ImpDipp)2{CyN[double bond, length as m-dash]C(CH2Ph)NHCy}] (), with one amidinato and two aryliminopyrrolyl ligands in the coordination sphere, was obtained in good yield. In contrast, the homoleptic magnesium complex reacted with one equivalent of N-aryliminopyrrolyl ligand (ImpDipp-H) to produce another mixed ligated magnesium complex [Mg{DippN[double bond, length as m-dash]C(CH2Ph)CH2NDipp}(ImpDipp)] (), with a benzylated DAD ligand and aryliminopyrrolyl ligands in the coordination sphere. Further reaction of complex with benzyl alcohol (PhCH2OH) afforded the third mixed ligated magnesium complex [Mg{DippN[double bond, length as m-dash]C(CH2Ph)CH2NDipp}(OCH2Ph)2] () in very good yield. The magnesium complexes were characterised using standard analytical/spectroscopic techniques and their solid-state structures were established by single-crystal X-ray diffraction analysis.

8.
Dalton Trans ; 43(39): 14876-88, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25177841

RESUMEN

We report here a number of dianionic 1,4-diaza-1,3-butadiene complexes of titanium and zirconium synthesised by a salt metathesis reaction. The reaction of either CpTiCl3 or Cp2TiCl2 with the dilithium salt of N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene [; abbreviated (Dipp)2DADLi2] afforded the mono-cyclopentadienyl titanium complex [η(5)-CpTi((Dipp)2DAD)Cl] () bearing a dianionic ene-diamide ligand, while the analogous reaction of zirconocene dichloride (Cp2ZrCl2) with the dilithium salt gave the bis-cyclopentadienyl zirconium complex [Cp2Zr{(Dipp)2DAD}] (). The metal dichloride complexes [Ti((Dipp)2DAD)Cl2] () and [{(Dipp)2DADZrCl(µ-Cl)}2(κ(3)-Cl)(Li)(OEt2)2] () were obtained by the reaction of and anhydrous metal tetrachloride in a 1 : 1 molar ratio in diethyl ether at room temperature. Meanwhile, the homoleptic titanium complex [Ti{((Dipp)2DAD)}2] () was isolated in good yield by the treatment of with TiCl4 in a 1 : 2 molar ratio in diethyl ether. The complexes and were further reacted with neosilyl lithium to afford mono- and bis-alkyl complexes of titanium [η(5)-CpTi{(Dipp)2DAD}(CH2SiMe3)] () and zirconium [Zr{(Dipp)2DAD}(CH2SiMe3)2] () respectively. Molecular structures of the complexes , , and in the solid states were confirmed by single crystal X-ray diffraction analysis. The solid state structures of all the complexes reveal that the metal ions are chelated through the amido-nitrogen atoms and the olefinic carbons of the [(Dipp)2DAD](2-) moiety, satisfying the σ(2),π coordination mode. Compound was used as a catalyst for the intermolecular hydrosilylation reaction of a number of olefins, and moderate activity of catalyst was observed.

9.
Dalton Trans ; 42(14): 4947-56, 2013 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-23385527

RESUMEN

We report here a series of heavier alkaline earth metal complexes with a phosphinoselenoic amide ligand using two synthetic routes. In the first route, the heavier alkaline earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba) were treated with phosphinoselenoic amine [Ph2P(Se)NH(CHPh2)] (3), prepared by the treatment of bulky phosphinamines [Ph2PNH(CHPh2)] (1) with elemental selenium in THF, and afforded homoleptic alkaline earth metal complexes of composition [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (7), Sr (8), Ba (9)). The metal complexes 7­9 can also be obtained via salt metathesis route where the alkali metal phosphinoselenoic amides of composition [{(THF)2M'Ph2P(Se)N(CHPh2)}2] (M' = Na (5) and K (6)) were reacted with respective metal diiodides in THF at ambient temperature. The solid state structures of the alkali metal complexes 5­6 and alkaline earth metal complexes 7­9 were established by single crystal X-ray diffraction analysis. In the solid state, alkali metal complexes 5 and 6 are dimeric and form a poly-metallacyclic structural motif. In contrast, complexes 7­9 are monomeric and a direct metal­selenium bond is observed in each case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...