Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(41): 28416-28425, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766933

RESUMEN

The design and synthesis of ferrocene-functionalized organic small molecules using quinoline cores are rendered to achieve a ternary write-once-read-many (WORM) memory device. Introducing an electron-withdrawing group into the ferrocene system changes the compounds' photophysical, electrochemical, and memory behavior. The compounds were synthesized with and without an acetylene bridge between the ferrocene unit and quinoline. The electrochemical studies proved the oxidation behavior with a slightly less intense reduction peak of the ferrocene unit, demonstrating that quinolines have more reducing properties than ferrocene with bandgaps ranging from 2.67-2.75 eV. The single crystal analysis of the compounds also revealed good interactive interactions, ensuring good molecular packing. This further leads to a ternary WORM memory with oxidation of the ferrocene units and charge transfer in the compounds. The devices exhibit on/off ratios of 104 and very low threshold voltages of -0.58/-1.02 V with stabilities of 103 s and 100 cycles of all the states through retention and endurance tests.

2.
ACS Appl Mater Interfaces ; 15(19): 23546-23556, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130268

RESUMEN

To better understand the structure-property relationship and the significance of the donor-acceptor (D-A) system in resistive memory devices, a series of new organic small molecules with A-π-D-π-A- and D-π-D-π-D-based architecture comprising a bis(triphenylamine) core unit and ethynyl-linked electron donor/acceptor arms were designed and synthesized. The devices with A-π-D-π-A structures exhibited write-once-read-many memory behavior with a good retention time of 1000 s while those based on D-π-D-π-D molecules presented only conductor property. The compound with nitrophenyl substitution resulted in a higher ON/OFF current ratio of 104, and the fluorophenyl substitution exhibited the lowest threshold voltage of -1.19 V. Solubility of the compounds in common organic solvents suggests that they are promising candidates for economic solution-processable techniques. Density functional theory calculations were used to envision the frontier molecular orbitals and to support the proposed resistive switching mechanisms. It is inferred that the presence of donor/acceptor substituents has a significant impact on the highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels of the molecules, which affects their memory-switching behavior and thus suggests that a D-A architecture is ideal for memory device resistance switching characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...