Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(12): 1529-1543, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957360

RESUMEN

Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Mitofagia , Animales , Longevidad/genética , Caenorhabditis elegans/genética , Autofagia , Receptores Citoplasmáticos y Nucleares/genética , Mamíferos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
Aging (Albany NY) ; 15(13): 5966-5989, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37437248

RESUMEN

A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Animales , Humanos , Reprogramación Celular/genética , Senescencia Celular/genética , Envejecimiento/genética , Metilación de ADN , Mamíferos
3.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35903774

RESUMEN

We used CRISPR/Cas9 gene editing in C. elegans in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the aco-2::gfp strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the aco-2::gfp strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress. We also provide evidence that the ACO-2::GFP reporter can serve as a superior means for tracking mitochondrial morphology than conventional MitoTracker dyes-especially in aged-worms.

4.
Elife ; 102021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467850

RESUMEN

Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.


Asunto(s)
Envejecimiento , Caenorhabditis elegans/fisiología , Membranas Mitocondriales/fisiología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Respuesta de Proteína Desplegada , Animales , Mitocondrias/fisiología
5.
J Vis Exp ; (162)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32831297

RESUMEN

We and others have shown that the aging process results in a proteome-wide accumulation of insoluble proteins. Knocking down genes encoding the insoluble proteins over 40% of the time results in an extension of the lifespan in C. elegans, suggesting that many of these proteins are key determinants of the aging process. Isolation and quantitative identification of these insoluble proteins are crucial to understand key biological processes that occur during aging. Here, we present a modified and improved protocol that details how to extract and isolate the SDS-insoluble proteins (insolublome) from C. elegans more efficiently to streamline mass spectrometric workflows via a novel label-free quantitative proteomics analysis. This improved protocol utilizes a highly efficient sonicator for worm lysis that greatly increases efficiency for protein extraction and allows us to use significantly less starting material (approximately 3,000 worms) than in previous protocols (typically using at least 40,000 worms). Subsequent quantitative proteomic analysis of the insolublome was performed using data-dependent acquisition (DDA) for protein discovery and identification and data-independent acquisition (DIA) for comprehensive and more accurate protein quantification. Bioinformatic analysis of quantified proteins provides potential candidates that can be easily followed up with other molecular methods in C. elegans. With this workflow, we routinely identify more than 1000 proteins and quantify more than 500 proteins. This new protocol enables efficient compound screening with C. elegans. Here, we validated and applied this improved protocol to wild-type C. elegans N2-Bristol strain and confirmed that aged day-10 N2 worms showed greater accumulation of the insolublome than day-2 young worms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Agregado de Proteínas , Proteoma/análisis , Proteómica/métodos , Envejecimiento , Animales , Caenorhabditis elegans/embriología , Longevidad , Flujo de Trabajo
6.
Mediators Inflamm ; 2017: 8302636, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473732

RESUMEN

Glial activation and subsequent release of neurotoxic proinflammatory factors are believed to play an important role in the pathogenesis of several neurological disorders including Parkinson's disease (PD). Inhibition of glial activation and inflammatory processes may represent a therapeutic target to alleviate neurodegeneration. Securinine, a major natural alkaloid product from the root of the plant Securinega suffruticosa, has been reported to have potent biological activity and is used in the treatment of neurological conditions such as amyotrophic lateral sclerosis, poliomyelitis, and multiple sclerosis. In this study, we explored the underlying mechanisms of neuroprotection elicited by securinine, particularly its anti-inflammatory effects in glial cells. Our results demonstrate that securinine significantly and dose-dependently suppressed the nitric oxide production in microglia and astrocytic cultures. In addition, securinine inhibited the activation of the inflammatory mediator NF-κB, as well as mitogen-activated protein kinases in lipopolysaccharide- (LPS-) stimulated BV2 cells. Additionally, securinine also inhibited interferon-γ- (IFN-γ-) induced nitric oxide levels and iNOS mRNA expression. Furthermore, conditioned media (CM) from securinine pretreated BV2 cells significantly reduced mesencephalic dopaminergic neurotoxicity compared with CM from LPS stimulated microglia. These findings suggest that securinine may be a potential candidate for the treatment of neurodegenerative diseases related to neuroinflammation.


Asunto(s)
Azepinas/uso terapéutico , Compuestos Heterocíclicos de Anillo en Puente/uso terapéutico , Lactonas/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Piperidinas/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Astrocitos/efectos de los fármacos , Western Blotting , Supervivencia Celular/efectos de los fármacos , Factor 3 de Genes Estimulados por el Interferón/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Enfermedad de Parkinson/inmunología , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa
7.
Nat Commun ; 8: 14256, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220799

RESUMEN

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.


Asunto(s)
Caenorhabditis/efectos de los fármacos , Antecedentes Genéticos , Longevidad/efectos de los fármacos , Compuestos Orgánicos/farmacología , Animales , Benzotiazoles , Caenorhabditis/clasificación , Caenorhabditis/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Relación Dosis-Respuesta a Droga , Fertilidad/efectos de los fármacos , Fertilidad/genética , Longevidad/genética , Reproducibilidad de los Resultados , Especificidad de la Especie , Tiazoles/farmacología
8.
Metallomics ; 6(10): 1816-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25057947

RESUMEN

Parkinson's disease (PD) is a debilitating motor and cognitive neurodegenerative disorder for which there is no cure. While aging is the major risk factor for developing PD, clear environmental risks have also been identified. Environmental exposure to the manganese (Mn) metal is a prominent risk factor for developing PD and occupational exposure to high levels of Mn can cause a syndrome known as manganism, which has symptoms that closely resemble PD. In this study, we developed a model of manganism in the environmentally tractable nematode, Caenorhabditis elegans. We find that, in addition to previously described modes of Mn toxicity, which primarily include mitochondrial dysfunction and oxidative stress, Mn exposure also significantly antagonizes protein homeostasis, another key pathological feature associated with PD and many age-related neurodegenerative diseases. Mn treatment activates the ER unfolded protein response, severely exacerbates toxicity in a disease model of protein misfolding, and alters aggregate solubility. Further, aged animals, which have previously been shown to exhibit decreased protein homeostasis, are particularly susceptible to Mn toxicity when compared to young animals, indicating that the aging process sensitizes animals to metal toxicity. Mn exposure also significantly alters iron (Fe) and calcium (Ca) homeostasis, which is important for mitochondrial and ER health and which may further compound toxicity. These findings indicate that modeling manganism in C. elegans can provide a useful platform for identifying therapeutic interventions for ER stress, proteotoxicity, and age-dependent susceptibilities, key pathological features of PD and other related neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Hierro/metabolismo , Manganeso/metabolismo , Manganeso/toxicidad , Envejecimiento , Animales , Homeostasis , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Respuesta de Proteína Desplegada
9.
Aging (Albany NY) ; 5(10): 759-69, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24123581

RESUMEN

Loss of germline precursor cells in C. elegans has previously been shown to improve protein homeostasis and extend lifespan, possibly due to reallocation of resources to somatic cells. In contrast, mutants that are sterile simply due to loss of sperm or oocyte production have a normal lifespan, often leading to the conclusion that loss of reproduction per se may have minor effects on C. elegans. We have found that inhibiting reproduction in C. elegans via the DNA synthesis inhibitor 5-fluoro-2-deoxyuridine (FUdR) improves protein homeostasis, stress resistance, and healthspan in wild-type animals. We find that FUdR is dependent on oogenesis and oocytic maturation. The effects of FUdR are dependent on FEM pathways, which regulate initiation of spermatogenesis. Loss of FEM expression leads to feminized animals that maintain arrested oocytes and are refractory to the effects of FUdR. FUdR-dependence is restored by spermatogenic signals, which trigger oocytic maturation and ovulation. Further, loss of FEM-3, a novel protein required for spermatogenesis, is sufficient to improve aspects of proteostasis. These effects are independent of previously described germline signals, including the DAF-16/FOXO, DAF-12/VDR, and HSF-1 pathways. These findings suggest that genetic or chemical inhibition of oocyte production can improve protein homeostasis in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Fertilidad/fisiología , Uridina/análogos & derivados , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Factores de Transcripción Forkhead , Proteínas de Choque Térmico/genética , Homeostasis , Estrés Fisiológico , Factores de Transcripción/fisiología , Uridina/farmacología
10.
PLoS One ; 5(2): e9053, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20140226

RESUMEN

Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold.


Asunto(s)
Actinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgénicos/metabolismo , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular , Exones/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteína Huntingtina , Cuerpos de Inclusión/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Receptores Androgénicos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Transfección , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...