Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731486

RESUMEN

Carbonic anhydrases are mononuclear metalloenzymes catalyzing the reversible hydration of carbon dioxide in organisms belonging to all three domains of life. Although the mechanism of the catalytic reaction is similar, different families of carbonic anhydrases do not have a common ancestor nor do they exhibit significant resemblance in the amino acid sequence or the structure and composition of the metal-binding sites. Little is known about the physical principles determining the metal affinity and selectivity of the catalytic centers, and how well the native metal is protected from being dislodged by other metal species from the local environment. Here, we endeavor to shed light on these issues by studying (via a combination of density functional theory calculations and polarizable continuum model computations) the thermodynamic outcome of the competition between the native metal cation and its noncognate competitor in various metal-binding sites. Typical representatives of the competing cations from the cellular environments of the respective classes of carbonic anhydrases are considered. The calculations reveal how the Gibbs energy of the metal competition changes when varying the metal type, structure, composition, and solvent exposure of the active center. Physical principles governing metal competition in different carbonic anhydrase metal-binding sites are delineated.


Asunto(s)
Anhidrasas Carbónicas , Dominio Catalítico , Metales , Termodinámica , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Metales/química , Sitios de Unión , Modelos Moleculares
2.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672503

RESUMEN

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Asunto(s)
Antibacterianos , Galio , Hierro , Compuestos Organometálicos , Fenoles , Pseudomonas aeruginosa , Sideróforos , Galio/química , Galio/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Hierro/metabolismo , Hierro/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología , Simulación por Computador , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacología
3.
Molecules ; 28(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38138619

RESUMEN

The family of cucurbiturils (CBs), the unique pumpkin-shaped macrocycles, has received great attention over the past four decades owing to their remarkable recognition properties. They have found diverse applications including biosensing and drug delivery technologies. The cucurbituril complexation of guest molecules can modulate their pKas, improve their solubility in aqueous solution, and reduce the adverse effects of the drugs, as well as enhance the stability and/or enable targeted delivery of the drug molecule. Employing twelve cationic styryl dyes with N-methyl- and N-phenylpiperazine functionality as probes, we attempted to understand the factors that govern the host-guest complexation of such molecules within CB[7] and CB[8] host systems. Various key factors determining the process were recognized, such as the pH and dielectric constant of the medium, the cavity size of the host, the chemical characteristics of the substituents in the guest entity, and the presence/absence of metal cations. The presented results add to our understanding (at the molecular level) of the mechanism of encapsulation of styryl dyes by cucurbiturils, thus shedding new light on various aspects of the intriguing complexation chemistry and the underlying recognition processes.

4.
Molecules ; 28(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37630360

RESUMEN

Quadruplexes (GQs), peculiar DNA/RNA motifs concentrated in specific genomic regions, play a vital role in biological processes including telomere stability and, hence, represent promising targets for anticancer therapy. GQs are formed by folding guanine-rich sequences into square planar G-tetrads which stack onto one another. Metal cations, most often potassium, further stabilize the architecture by coordinating the lone electron pairs of the O atoms. The presence of additional nucleic acid bases, however, has been recently observed experimentally and contributes substantially to the structural heterogeneity of quadruplexes. Therefore, it is of paramount significance to understand the factors governing the underlying complex processes in these structures. The current study employs DFT calculations to model the interactions between metal cations (K+, Na+, Sr2+) and diverse tetrads composed of a guanine layer in combination with a guanine (G)-, adenine (A)-, cytosine (C)-, thymine (T)-, or uracil (U)-based tetrad layer. Moreover, the addition of 4-(3,4-dihydroisoquinolin-2-yl)-2-(quinolin-2-yl)quinazoline to the modeled quadruplexes as a possible mechanism of its well-exerted antitumor effect is assessed. The calculations imply that the metal cation competition and ligand complexation are influenced by the balance between electronic and implicit/explicit solvation effects, the composition of the tetrad layers, as well as by the solvent exposure to the surrounding environment expressed in terms of different dielectric constant values. The provided results significantly enhance our understanding of quadruplex diversity, ligand recognition, and the underlying mechanisms of stabilization at an atomic level.


Asunto(s)
Ácidos Nucleicos , Ligandos , Metales , ARN , Guanina
5.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631098

RESUMEN

BACKGROUND: The inflammatory process represents a specific response of the organism's immune system. More often, it is related to the rising pain in the affected area. Independently of its origin, pain represents a complex and multidimensional acute or chronic subjective unpleasant perception. Currently, medical doctors prescribe various analgesics for pain treatment, but unfortunately, many of them have adverse effects or are not strong enough to suppress the pain. Thus, the search for new pain-relieving medical drugs continues. METHODS: New tetrapeptide analogs of FELL with a generaanalgesic-Glu-X3-X4-Z, where X = Nle, Ile, or Val and Z = NH2 or COOH, containing different hydrophobic amino acids at positions 3 and 4, were synthesized by means of standard solid-phase peptide synthesis using the Fmoc/OtBu strategy in order to study the influence of structure and hydrophobicity on the analgesic activity. The purity of all compounds was monitored by HPLC, and their structures were proven by ESI-MS. Logp values (partition coefficient in octanol/water) for FELL analogs were calculated. Analgesic activity was examined by the Paw-pressure test (Randall-Selitto test). RESULTS: The obtained results reveal that Leu is the best choice as a hydrophobic amino acid in the FELL structure. CONCLUSIONS: The best analgesic activity is found in the parent compound FELL and its C-terminal amide analog.

6.
Phys Chem Chem Phys ; 25(27): 18149-18157, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37386862

RESUMEN

Nearly half of all known proteins contain metal co-factors. In the course of evolution two dozen metal cations (mostly monovalent and divalent species) have been selected to participate in processes of vital importance for living organisms. Trivalent metal cations have also been selected, although to a lesser extent as compared with their mono- and divalent counterparts. Notably, factors governing the metal selectivity in trivalent metal centers in proteins are less well understood than those in the respective divalent metal centers. Thus, the source of high La3+/Ca2+ selectivity in lanthanum-binding proteins, as compared with that of calcium-binding proteins (i.e., calmodulin), is still shrouded in mystery. The well-calibrated thermochemical calculations, performed here, reveal the dominating role of electrostatic interactions in shaping the metal selectivity in La3+-binding centers. The calculations also disclose other (second-order) determinants of metal selectivity in these systems, such as the rigidity and extent of solvent exposure of the binding site. All these factors are also implicated in shaping the metal selectivity in Ca2+-binding proteins.


Asunto(s)
Proteínas Portadoras , Metales , Proteínas Portadoras/metabolismo , Electricidad Estática , Metales/metabolismo , Cationes/metabolismo , Cationes Bivalentes/química , Sitios de Unión , Proteínas/metabolismo , Calcio/química
7.
Biomolecules ; 13(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37189429

RESUMEN

Due to the similarity in the basic coordination behavior of their mono-charged cations, silver biochemistry is known to be linked to that of copper in biological systems. Still, Cu+/2+ is an essential micronutrient in many organisms, while no known biological process requires silver. In human cells, copper regulation and trafficking is strictly controlled by complex systems including many cytosolic copper chaperones, whereas some bacteria exploit the so-called "blue copper" proteins. Therefore, evaluating the controlling factors of the competition between these two metal cations is of enormous interest. By employing the tools of computational chemistry, we aim to delineate the extent to which Ag+ might be able to compete with the endogenous copper in its Type I (T1Cu) proteins, and where and if, alternatively, it is handled uniquely. The effect of the surrounding media (dielectric constant) and the type, number, and composition of amino acid residues are taken into account when modelling the reactions in the present study. The obtained results clearly indicate the susceptibility of the T1Cu proteins to a silver attack due to the favorable composition and geometry of the metal-binding centers, along with the similarity between the Ag+/Cu+-containing structures. Furthermore, by exploring intriguing questions of both metals' coordination chemistry, an important background for understanding the metabolism and biotransformation of silver in organisms is provided.


Asunto(s)
Cobre , Plata , Humanos , Cobre/química , Plata/química
8.
Pharmaceutics ; 15(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37111609

RESUMEN

(1) Background: Hydrophobicity (or lipophilicity) is a limiting factor in the ability of molecules to pass through cell membranes and to perform their function. The ability to efficiently access cytosol is especially important when a synthetic compound has the potential to become a drug substance. D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2 (BIM-23052) is a linear analog of somatostatin with established in vitro GH-inhibitory activity in nanomolar (nm) concentrations and high affinity to different somatostatin receptors. (2) Methods: Series of analogs of BIM-23052 were synthesized where Phe residue(s) in the BIM-23052 molecule were replaced with Tyr using standard SPPS, Fmoc/t-Bu strategy. Analyses of target compounds were performed using HPLC/MS technique. Toxicity and antiproliferative activity were studied using in vitro NRU and MTT assays. The values of logP (partition coefficient in octanol/water) for BIM-23052 and its analogs were calculated. (3) Results: The obtained data show the best antiproliferative effect against studied cancer cells for compound D-Phe-Phe-Phe-D-Trp-Lys-Thr-Tyr7-Thr-NH2 (DD8), the most lipophilic compound according to the predicted logP values. (4) Conclusions: Multiple analyses of the obtained data reveal that compound D-Phe-Phe-Phe-D-Trp-Lys-Thr-Tyr7-Thr-NH2 (DD8) where one Phe is replaced by Tyr has the best combination of cytotoxicity, antiproliferative effect and hydrolytic stability.

9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047269

RESUMEN

Lanthanides, the 14 4f-block elements plus Lanthanum, have been extensively used to study the structure and biochemical properties of metalloproteins. The characteristics of lanthanides within the lanthanide series are similar, but not identical. The present research offers a systematic investigation of the ability of the entire Ln3+ series to substitute for Ca2+ in biological systems. A well-calibrated DFT/PCM protocol is employed in studying the factors that control the metal selectivity in biological systems by modeling typical calcium signaling/buffering binding sites and elucidating the thermodynamic outcome of the competition between the "alien" La3+/Ln3+ and "native" Ca2+, and La3+ - Ln3+ within the lanthanide series. The calculations performed reveal that the major determinant of the Ca2+/Ln3+ selectivity in calcium proteins is the net charge of the calcium binding pocket; the more negative the charge, the higher the competitiveness of the trivalent Ln3+ with respect to its Ca2+ contender. Solvent exposure of the binding site also influences the process; buried active centers with net charge of -4 or -3 are characterized by higher Ln3+ over Ca2+ selectivity, whereas it is the opposite for sites with overall charge of -1. Within the series, the competition between La3+ and its fellow lanthanides is determined by the balance between two competing effects: electronic (favoring heavier lanthanides) and solvation (generally favoring the lighter lanthanides).


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Calcio/metabolismo , Lantano , Sitios de Unión , Calcio de la Dieta
10.
Molecules ; 28(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36838524

RESUMEN

With the emergence of host-guest systems, a novel branch of complexation chemistry has found wide application in industries such as food, pharmacy, medicine, environmental protection and cosmetics. Along with the extensively studied cyclodextrins and calixarenes, the innovative cucurbiturils (CB) have enjoyed increased popularity among the scientific community as they possess even better qualities as cavitands as compared to the former molecules. Moreover, their complexation abilities could further be enhanced with the assistance of metal cations, which can interestingly exert a dual effect on the complexation process: either by competitively binding to the host entity or cooperatively associating with the CB@guest structures. In our previous work, two metal species (Mg2+ and Ga3+) have been found to bind to CB molecules in the strongest fashion upon the formation of host-guest complexes. The current study focuses on their role in the complex formation with three dye molecules: thiazole orange, neutral red, and thioflavin T. Various key factors influencing the process have been recognized, such as pH and the dielectric constant of the medium, the cavity size of the host, Mn+ charge, and the presence/absence of hydration shell around the metal cation. A well-calibrated DFT methodology, solidly based and validated and presented in the literature experimental data, is applied. The obtained results shed new light on several aspects of the cucurbituril complexation chemistry.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Colorantes , Estructura Molecular , Hidrocarburos Aromáticos con Puentes/química
11.
J Mol Graph Model ; 119: 108380, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36455472

RESUMEN

Cucurbiturils are useful excipients in eye drop formulations: they can increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Effective and safe drug delivery is, however, a challenge and the information on the host (CBs)/guest (tropicamide and atropine) interactions can help improving the existing treatments and develop novel therapies not limited only to eye diseases/conditions. Since this carrier system can easily modify the properties of the drug and ensure its delivery at the targeted ocular tissue, further insight into the intimate mechanism of the host-guest recognition is crucial. The present DFT/SMD study focuses on the role of numerous factors governing this process, namely the specific position of the guest molecule in the cavity of the cucurbituril, the ionization form (non/protonated) of the antimuscarinic drug, the dielectric constant of the medium, and the size of the cavitant pore. The obtained results are in line with experimental observations and shed light on the mechanism, at atomic resolution, of recognition between the CBs and the two parasympatholytic drugs.


Asunto(s)
Antagonistas Muscarínicos , Tropicamida , Preparaciones Farmacéuticas , Atropina , Hidrocarburos Aromáticos con Puentes
12.
Comput Biol Chem ; 101: 107785, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375371

RESUMEN

Silver's antimicrobial properties have been known for centuries, but exactly how it kills bacteria is still a mystery. Information on the competition between the native Ni2+ and abiogenic Ag+ cations in bacterial systems is also critically lacking. For example, urease, a famous nickel-containing enzyme that hydrolyzes urea into carbon dioxide and ammonia (a key step in the biogeochemical nitrogen cycle on Earth), is inhibited by Ag+ cations, but the molecular mechanism of silver's action is poorly understood. By employing density functional theory (DFT) calculations combined with the polarizable continuum model (PCM) computations we assess the susceptibility of the mono/binuclear Ni2+ binding sites in the nickel enzymatic centers to Ni2+→Ag+ substitution. The active centers in the mononuclear glyoxalase I and acireductone dioxygenase enzymes appear to be well protected against Ag+ attack and, presumably, stay functional even in its presence. On the other hand, the binuclear nickel binding site in urease appears vulnerable to silver attack - the results obtained are in line with available experimental data and give reason to assume a possible substitution of the essential Ni2+ cation from the urease metal center by Ag+.


Asunto(s)
Níquel , Ureasa , Níquel/farmacología , Níquel/química , Níquel/metabolismo , Ureasa/química , Plata/farmacología , Sitios de Unión , Antibacterianos/farmacología
13.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080261

RESUMEN

Gallium (III) complexes with the ligands 5-bromosalicylaldehyde-4-hydroxybenzoylhydrazone and 5-bromosalicylaldehyde isonicotinoylhydrazone were synthesized to receive compounds with improved antiproliferative action. Compounds were characterized by elemental analysis, IR, and NMR spectroscopy. Density functional theory calculations with Becke's 3-parameter hybrid functional and 6-31+G(d,p) basis set were carried out to investigate the structural features of the ligands and Ga(III) complexes. Cytotoxic screening by MTT-dye reduction assay was carried out using cisplatin and melphalan as reference cytotoxic agents. A general formula [Ga(HL)2]NO3 for the complexes obtained was suggested. The complexes are mononuclear with the Ga(III) ions being surrounded by two ligands. The ligands acted as monoanionic tridentate (ONO) donor molecules. The analysis revealed coordination binding through deprotonated phenolic-oxygen, azomethine-nitrogen, and amide-oxygen atoms. The bioassay demonstrated that all compounds exhibited concentration-dependent antiproliferative activity at low micromolar concentrations against the acute myeloid leukemia HL-60 and T-cell leukemia SKW-3 cell lines. IC50 values of 5-bromo-derivative ligands and gallium (III) complexes are lower than those of cisplatin and much lower than these of melphalan. The coordination to gallium (III) additionally increased the cytotoxicity compared to the metal-free hydrazones.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Galio , Aldehídos , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino , Complejos de Coordinación/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Galio/química , Galio/farmacología , Humanos , Ligandos , Melfalán , Oxígeno
14.
Inorg Chem ; 61(26): 10089-10100, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35724666

RESUMEN

Although silver is one of the first metals finding broad applications in everyday life, specific key points of the intimate mechanism of its bacteriostatic/bactericidal activity lack explanation. It is widely accepted that the antimicrobial potential of the silver cation depends on the composition and thickness of the bacterial external envelope: the outer membrane in Gram-negative bacteria is more prone to Ag+ attack than the cell wall in Gram-positive bacteria. The major cellular components able to interact strongly with Ag+ (teichoic acids, phospholipids, and lipopolysaccharides) contain mono/diesterified phosphate moieties. By applying a reliable DFT/SMD methodology, we modeled the reactions between the aforementioned constituents in typical Gram-positive and Gram-negative bacteria and hydrated Ag+ species, thus disclosing the factors that govern the process of metal-model ligand complexation. The conducted research indicates thermodynamically possible reactions in all cases but still a greater preference of the Ag+ toward the constituents in Gram-negative bacteria in comparison with their counterparts in Gram-positive bacteria. The observed tendencies shed light on the specific interactions of the silver cation with the modeled phosphate-containing units at the atomic level.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Bacterias , Cationes , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Fosfatos/farmacología , Plata/farmacología
15.
Phys Chem Chem Phys ; 24(10): 6274-6281, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35230371

RESUMEN

Cucurbiturils (CBs), the pumpkin-shaped macrocycles, are suitable hosts for an array of neutral and cationic species. A plethora of host-guest complexes between CBs and a variety of guest molecules has been studied. However, much remains unknown, even in the complexation of very simple guests such as metal cations. In the computational study herein, DFT molecular modeling has been employed to investigate the interactions of a series of trivalent metal cations (Al3+, Ga3+, In3+, La3+, Lu3+) to cucurbit[n]urils and to evaluate the main factors controlling the host-guest complexation. The thermodynamic descriptors (Gibbs energies in the gas phase and in a water environment) of the corresponding complexation reactions have been estimated. This research is a logical continuation of an earlier study on the interaction between CB[n]s and a series of biologically essential mono- and divalent metal cations (Na+/K+ and Mg2+/Ca2+, respectively).


Asunto(s)
Compuestos Macrocíclicos , Cationes , Metales , Termodinámica
16.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616999

RESUMEN

A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job's plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively.


Asunto(s)
Mercurio , Naftalimidas , Naftalimidas/química , Colorantes Fluorescentes/química , Mercurio/química , Agua/química , Solventes/química , Espectrometría de Fluorescencia , Concentración de Iones de Hidrógeno
17.
Biophys Chem ; 276: 106626, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34082361

RESUMEN

Nutraceuticals and functional foods garner a lot of attention as potential alternative therapies for treatment of (pre)hypertension. Food-derived proteins release large variety of bioactive peptides which are similar in structure to peptide sequences acting in the organism and therefore can modulate their physiological functions. Val-Pro-Pro (VPP) is a milk-derived tripeptide with assumed mild inhibitory activity against angiotensin-converting enzyme (ACE). Computational (DFT) methods are applied on simplified models of Zn2+-HEXXH binding motif without/with bound inhibitors in order to assess the ability of two pharmaceutical drugs (Captopril and Lisinopril) and Val-Pro-Pro to coordinate with Zn2+-HEXXH binding motif of ACE. Both drugs have significant affinity towards the active site, while the Val-Pro-Pro tripeptide has weaker affinity. The obtained results shed light on the thermodynamic aspects of the inhibitors coordination to the Zn2+-HEXXH binding motif of ACE.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Secuencia de Aminoácidos , Captopril , Lisinopril , Péptidos , Peptidil-Dipeptidasa A
18.
Antioxidants (Basel) ; 10(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921802

RESUMEN

Oxidative stress is associated with the increased production of reactive oxygen species or with a significant decrease in the effectiveness of antioxidant enzymes and nonenzymatic defense. The penetration of oxygen and free radicals in the hydrophobic interior of biological membranes initiates radical disintegration of the hydrocarbon "tails" of the lipids. This process is known as "lipid peroxidation", and the accumulation of the oxidation products as peroxides and the aldehydes and acids derived from them are often used as a measure of oxidative stress levels. In total, 40 phenolic antioxidants were selected for a comparative study and analysis of their chain-breaking antioxidant activity, and thus as modulators of oxidative stress. This included natural and natural-like ortho-methoxy and ortho-hydroxy phenols, nine of them newly synthesized. Applied experimental and theoretical methods (bulk lipid autoxidation, chemiluminescence, in silico methods such as density functional theory (DFT) and quantitative structure-activity relationship ((Q)SAR) modeling) were used to clarify their structure-activity relationship. Kinetics of non-inhibited and inhibited lipid oxidation in close connection with inhibitor transformation under oxidative stress is considered. Special attention has been paid to chemical reactions resulting in the initiation of free radicals, a key stage of oxidative stress. Effects of substituents in the side chains and in the phenolic ring of hydroxylated phenols and biphenols, and the concentration were discussed.

19.
J Phys Chem A ; 125(2): 536-542, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33415972

RESUMEN

The nature of interactions between the neutral/protonated mitoxantrone and the cucurbit[n]uril (n = 7, 8) host system was analyzed by employing density functional theory calculations. A comparison between the inclusion complexes of CB[7] and CB[8] shows various subtle differences in the complexation thermodynamics, given as changes in the Gibbs energy. Doubly and quadruply charged mitoxantrone (MX) molecules spontaneously form complexes in a water solvent, which are modeled using the polarizable continuum model approach. Both CB[7] and CB[8] complexes are stable as the geometry of the cavity allows for electrostatic interactions between the charged MX arms and the rim of the CB cavity. CB[8] also forms a stable complex with two mitoxantrone molecules with their aromatic rings stacked inside the cavity. Both CB[7] and CB[8] show properties that can be utilized in drug delivery.

20.
J Food Biochem ; 45(1): e13584, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340138

RESUMEN

The multi-target activity of curcumin makes it a promising pharmacological lead for structural modifications focused on the preparation of new better therapeutics with improved bioavailability. A possible modification is to "decompose" the parent curcumin structure into constituent units and to build up curcumin analogues with biphenyl structural moiety. The antioxidant properties of the so-called "monomers" (m1-m3) and "dimers" (d1-d3) are studied experimentally and computationally. Their protective effects as chain-breaking antioxidants are investigated for the individual compounds and in binary/ternary compositions with α-tocopherol (TOH) and ascorbyl palmitate (AscPH). All monomers manifest significant synergism up to 70% in mixtures with TOH. Synergistic effects are found for the ternary compositions of monomeric analogues upon addition to the binary mixture of standard antioxidants (TOH + AscPH). Dimers with biphenyl skeleton manifest a lower potential in compositions under lipid oxidation conditions. DFT computations provide a detailed insight into the structure and antiradical properties of the curcumin analogues and standard antioxidants. PRACTICAL APPLICATIONS: Bioactive compounds in the diet play a crucial role in the prevention of numerous diseases in whose pathogenesis oxidative stress is well known to be involved. Therefore, enhancement of the antioxidant status of the biological target is often helpful. Two of the monomers studied are considered leading agents in the treatment or prophylaxis of smooth muscle disorders and are useful in the maintenance of the normal gut function- as a calmative for the gut and to ease upset stomach. We hypothesized that the presence of a biphenyl scaffold in the parent molecular structure can enhance the biological activity. Equimolar mixtures of TOH with studied compounds have potential application in food chemistry and medicine. A composition comprising the active agent and additional components (strong conventional antioxidants) may be administered in foodstuffs, as a food supplement, beverage supplement, or as a pharmaceutical composition.


Asunto(s)
Antioxidantes , Curcumina , Antioxidantes/farmacología , Curcumina/farmacología , Estructura Molecular , Oxidación-Reducción , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...