Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 872: 162086, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36764536

RESUMEN

Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.


Asunto(s)
Ecosistema , Contaminación Lumínica , Chile , Estaciones del Año , Luz
2.
Environ Pollut ; 280: 116895, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784562

RESUMEN

The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.


Asunto(s)
Braquiuros , Gastrópodos , Animales , Señales (Psicología) , Ecosistema , Conducta Predatoria
3.
Sci Total Environ ; 780: 146568, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33774285

RESUMEN

Artificial light at night (ALAN) is a growing source of stress for organisms and communities worldwide. These include species associated with sandy beaches, which consume and process stranded seaweeds (wrack) in these ecosystems. This study assessed the influence of ALAN on the activity and feeding behaviour of Americorchestia longicornis, a prominent talitrid amphipod living in sandy beaches of Prince Edward Island, Atlantic Canada. First, two parallel field surveys were conducted to document the natural daily cycle of activity of this species. Then, three related hypotheses were used to assess whether ALAN disrupts its locomotor activity, whether that disruption lasts over time, and whether it affects the feeding behaviour and growth of the amphipods. Tanks equipped with actographs recorded amphipod locomotor activity for ~7 days and then its potential recovery (after ALAN removal) for additional ~3 days. Separate tanks were used to compare amphipod food consumptions rates, absorption efficiency and growth rates under natural daylight / night (control) and altered conditions (ALAN). The results of these manipulations provide support to two of the three hypotheses proposed and indicate that ALAN was temporarily detrimental for (i.e. significantly reduced) the surface activity, consumption rates and absorption efficiency of the amphipods, whereas growth rates remained unaffected. The results also rejected the remaining hypothesis and suggest that the plasticity exhibited by these amphipods confer them the capacity to recover their natural rhythm of activity shortly after ALAN was removed from the system. Combined, these results suggest that ALAN has a strong, albeit temporary, influence upon the abundant populations of A. longicornis. Such influence has implications for the ecosystem role played by these amphipods as consumers and processors of the subsidy of stranded seaweeds entering these ecosystems.


Asunto(s)
Anfípodos , Animales , Canadá , Ecosistema , Contaminación Ambiental , Conducta Alimentaria , Luz
4.
Sci Total Environ ; 776: 145916, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33639464

RESUMEN

In order to make adequate projections on the consequences of climate change stressors on marine organisms, it is important to know how impacts of these stressors are affected by the presence of other species. Here we assessed the direct effects of ocean warming (OW) and acidification (OA) along with non-consumptive effects (NCEs) of a predatory crab and/or a predatory snail on the habitat-forming mussel Perumytilus purpuratus. Mussels were exposed for 10-14 weeks to contrasting pCO2 (500 and 1400 µatm) and temperature (15 and 20 °C) levels, in the presence/absence of cues from one or two predator species. We compared mussel traits at sub-organismal (nutritional status, metabolic capacity-ATP production-, cell stress condition via HSP70 expression) and organismal (survival, oxygen consumption, growth, byssus biogenesis, clearance rates, aggregation) levels. OA increased the mussels' oxygen consumption; and OA combined with OW increased ATP demand and the use of carbohydrate reserves. Mussels at present-day pCO2 levels had the highest protein content. Under OW the predatory snail cues induced the highest cell stress condition on the mussels. Temperature, predator cues and the interaction between them affected mussel growth. Mussels grew larger at the control temperature (15 °C) when crab and snail cues were present. Mussel wet mass and calcification were affected by predator cues; with highest values recorded in crab cue presence (isolated or combined with snail cues). In the absence of predator cues in the trails, byssus biogenesis was affected by OA, OW and the OA × OW and OA × predator cues interactions. At present-day pCO2 levels, more byssus was recorded with snail than with crab cues. Clearance rates were affected by temperature, pCO2 and the interaction between them. The investigated stressors had no effects on mussel aggregation. We conclude that OA, OW and the NCEs may lead to neutral, positive or negative consequences for mussels.


Asunto(s)
Bivalvos , Cambio Climático , Animales , Dióxido de Carbono , Señales (Psicología) , Concentración de Iones de Hidrógeno , Conducta Predatoria , Agua de Mar
5.
J Phycol ; 55(5): 1140-1153, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295353

RESUMEN

Recently 18 Bangiales seaweed species were reported for the Chilean coast, including Pyropia orbicularis and Pyropia variabilis (large [LM] and green [GM] morphotypes). Porphyra/Pyropia spp. occur mainly in the upper intertidal where desiccation stress is triggered by tidal fluctuations. However, the influence of environmental and ecophysiological variables and seasonal differences on Porphyra/Pyropia (microhabitats) intertidal distributions is unknown. Accordingly, we determined (i) the effect of environmental variables (temperature [T], relative humidity [RH], and photosynthetically active radiation [PAR]) and season on distribution, and (ii) physiological (cellular activity and lipid peroxidation [LPX]) and molecular responses (antioxidant enzymes expression at biochemical and transcript level) to desiccation stress in both Pyropia species and morphotypes (common garden experiment, on flat rocky platforms). Multivariate analyses of coverage and abundance in relation to environmental variables revealed a significant effect of temperature on P. variabilis GM distribution, GM dominating almost exclusively on rocky walls (where lowest PAR and T values but maximum RH were registered). Conversely, Pyropia orbicularis and Pyropia variabilis LM were found in high abundance on flat rocky platforms in summer, LM and GM also dominating flat rocky platforms in winter and spring. LPX and catalase activity did not differed among species in summer, while in winter activity and transcription of cat were higher in P. orbicularis than P. variabilis. Results suggest that tolerance to environmental stresses such as temperature could regulate the occurrence of P. variabilis GM on rocky walls; conversely, abundances of P. variabilis and P. orbicularis on flat rocky platforms would be also regulated by other abiotic and/or biotic factors.


Asunto(s)
Porphyra , Rhodophyta , Algas Marinas , Chile , Estrés Fisiológico
6.
Environ Pollut ; 248: 565-573, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30831353

RESUMEN

Coastal habitats, in particular sandy beaches, are becoming increasingly exposed to artificial light pollution at night (ALAN). Yet, only a few studies have this far assessed the effects of ALAN on the species inhabiting these ecosystems. In this study we assessed the effects of ALAN on Tylos spinulosus, a prominent wrack-consumer isopod living in sandy beaches of north-central Chile. This species burrows in the sand during daylight and emerges at night to migrate down-shore, so we argue it can be used as a model species for the study of ALAN effects on coastal nocturnal species. We assessed whether ALAN alters the distribution and locomotor activity of this isopod using a light system placed in upper shore sediments close to the edge of the dunes, mimicking light intensities measured near public lighting. The response of the isopods was compared to control transects located farther away and not exposed to artificial light. In parallel, we measured the isopods' locomotor activity in the laboratory using actographs that recorded their movement within mesocosms simulating the beach surface. Measurements in the field indicated a clear reduction in isopod abundance near the source of the light and a restriction of their tidal distribution range, as compared to control transects. Meanwhile, the laboratory experiments showed that in mesocosms exposed to ALAN, isopods exhibited reduced activity and a circadian rhythm that was altered and even lost after a few days. Such changes with respect to control mesocosms with a natural day/night cycle suggest that the changes observed in the field were directly related to a disruption in the locomotor activity of the isopods. All together these results provide causal evidence of negative ALAN effects on this species, and call for further research on other nocturnal sandy beach species that might become increasingly affected by ALAN.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Contaminación Ambiental/efectos adversos , Isópodos/fisiología , Iluminación/efectos adversos , Locomoción/efectos de la radiación , Animales , Chile , Ecosistema
7.
Environ Pollut ; 244: 361-366, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30352350

RESUMEN

The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of "Baunco" the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.


Asunto(s)
Ciclos de Actividad/fisiología , Conducta Animal/fisiología , Metabolismo Energético/fisiología , Peces/fisiología , Iluminación/efectos adversos , Consumo de Oxígeno/fisiología , Animales , Ecosistema , Contaminación Ambiental , Humanos , Fotoperiodo , Reproducción/fisiología , Alimentos Marinos
8.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668898

RESUMEN

High-altitude wetland holds freshwater springs, evaporitic ponds and lagoon with variable salinity and nutrients, potentially influencing the ecology of nitrifying communities. In this study, nitrifying microorganisms in Salar de Huasco (Chile) were surveyed to determine bacterial and archaeal contribution to ammonium (AO), nitrite oxidation (NO), ammonium uptake (AU) during wet and dry seasons. The activity signals from these groups were assessed by specific amoA-qPCR transcription, 15N tracer studies and addition of group specific inhibitor experiments for nitrifying microorganisms (N1-guanyl-1, 7-diaminoheptane [GC7]-archaeal specific and allylthiourea [ATU]-bacterial specific). Nitrifying communities, i.e. Nitrosopumilus, Nitrosospira, Nitrosomonas, Kuenenia and Nitrospira, were more frequent (∼0.25% of 16S rRNA sequences) at low salinity sites. Bacterial amoA-qPCR transcripts also increased at low salinity and along in situ ammonium increase observed between wet/dry seasons. Nutrient changes through time and 15N tracer experiments results showed that AO and NO were detected and peaked mainly at low salinity-high ammonium sites (<37 000 µS cm-1 and >0.3 µM), whereas AU was predominant at evaporitic sites. Our results indicate that salinity and ammonium affect the nitrifying communities that are potentially more active at low-salinity sites but persistent at saltier evaporitic areas of the wetland when ammonium is available.


Asunto(s)
Compuestos de Amonio/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Nitrificación/fisiología , Nitritos/metabolismo , Altitud , Amoníaco/metabolismo , Archaea/genética , Bacterias/genética , Chile , Agua Dulce/microbiología , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Humedales
9.
Environ Microbiol Rep ; 8(5): 851-864, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27487247

RESUMEN

We report the seasonal and single-diurnal variability of potentially active members of the prokaryote community in coastal surface waters off central Chile and the relationship between nitrifiers and solar radiation by combining 16S cDNA-based pyrosequencing, RT-qPCR of specific gene markers for nitrifiers (amoA, for general AOA, AOA-A, AOA-B, Nitrosopumilus maritimus and beta-AOB; and 16S rRNA gene for Nitrospina-like NOB), and solar irradiance measurements. We also evaluated the effects of artificial UVA-PAR and PAR spectra on nitrifiers by RT-qPCR. All nitrifiers (except AOA-B ecotype) were detected via RT-qPCR but AOA was the only group detected by pyrosequencing. Results showed high variability in their transcriptional levels during the day which could be associated to sunlight intensity thresholds in winter although AOA and Nitrospina-like NOB transcript number were also potentially related with environmental substrate availability. Only N. maritimus amoA transcripts showed a significant negative correlation with solar irradiances in both periods. During spring-summer, Nitrospina transcripts decreased at higher sunlight intensities, whereas the opposite was found during winter under natural (in situ) and artificial light experiments. In summary, a nitrifying community with variable tolerance to solar radiation is responsible for daily nitrification, and was particularly diverse during winter in the study area.

10.
PLoS One ; 10(6): e0131327, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26125630

RESUMEN

The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency. Its use has been demonstrated in much of the world's oceans and includes numerous species. However, there is scant information on the temporal stability of the composition and abundance of MSFFs as well as the effect of seasonal food availability on their dynamics. Between July 2006 and September 2014, we conducted monthly at-sea seabird counts at Valparaiso Bay (32°56' to 33°01'S, 71°36' to 71°46'W) within the area of influence of the Humboldt Current in central Chile. This area is characterized by a marked seasonality in primary and secondary production associated with upwelling, mainly during austral spring-summer. Based on studies that provide evidence that flocking is most frequent when food is both scarce and patchy, we hypothesized that seabird MSFF attributes (i.e. frequency of occurrence, abundance and composition) will be modified according to the seasonal availability of food. Using generalized linear models (GLMs), our results show that the contrasting seasonality in food availability of the study area (using chlorophyll-a concentration as a proxy) had no significant influence on MSFF attributes, sparsely explaining their variations (P>0.05). Rather than seasonal food availability, the observed pattern for MSFF attributes at Valparaiso Bay suggests a substantial influence of reproductive and migratory (boreal and austral migrants) habits of birds that modulates MSFF dynamics consistently throughout the whole year in this highly variable and patchy environment. We highlight the importance of visual recruitment as a mechanism by which migratory and resident birds interact. This would allow them to reduce resource unpredictability, which in turn has a major impact on structuring seabird's MSFF dynamics.


Asunto(s)
Conducta Animal/fisiología , Aves/fisiología , Conducta Alimentaria/fisiología , Animales , Chile , Ecosistema , Femenino , Abastecimiento de Alimentos , Modelos Lineales , Masculino , Modelos Biológicos , Océanos y Mares , Dinámica Poblacional , Reproducción , Estaciones del Año , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...