Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459589

RESUMEN

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.


Asunto(s)
Infecciones por Herpesviridae/virología , Evasión Inmune , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Muromegalovirus/fisiología , Linfocitos T/inmunología , Animales , Ratones
2.
Elife ; 92020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31928630

RESUMEN

Cytomegaloviruses (CMVs) are ubiquitous pathogens known to employ numerous immunoevasive strategies that significantly impair the ability of the immune system to eliminate the infected cells. Here, we report that the single mouse CMV (MCMV) protein, m154, downregulates multiple surface molecules involved in the activation and costimulation of the immune cells. We demonstrate that m154 uses its cytoplasmic tail motif, DD, to interfere with the adaptor protein-1 (AP-1) complex, implicated in intracellular protein sorting and packaging. As a consequence of the perturbed AP-1 sorting, m154 promotes lysosomal degradation of several proteins involved in T cell costimulation, thus impairing virus-specific CD8+ T cell response and virus control in vivo. Additionally, we show that HCMV infection similarly interferes with the AP-1 complex. Altogether, we identify the robust mechanism employed by single viral immunomodulatory protein targeting a broad spectrum of cell surface molecules involved in the antiviral immune response.


Asunto(s)
Complejo 1 de Proteína Adaptadora/inmunología , Evasión Inmune/inmunología , Proteínas de la Membrana/metabolismo , Muromegalovirus/fisiología , Proteínas Virales/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Humanos , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/genética , Proteínas Virales/genética
3.
J Antimicrob Chemother ; 71(2): 387-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26542306

RESUMEN

OBJECTIVES: Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS: MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS: CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS: SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Herpesvirus Humano 1/fisiología , Macrófagos/virología , Proteínas de Unión al GTP Monoméricas/metabolismo , Piperazinas/farmacología , Piridinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Proteína 1 que Contiene Dominios SAM y HD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA