Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 23(1): 416, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209064

RESUMEN

BACKGROUND: The advent of low cost, high throughput DNA sequencing has led to the availability of thousands of complete genome sequences for a wide variety of bacterial species. Examining and interpreting genetic variation on this scale represents a significant challenge to existing methods of data analysis and visualisation. RESULTS: Starting with the output of standard pangenome analysis tools, we describe the generation and analysis of interactive, 3D network graphs to explore the structure of bacterial populations, the distribution of genes across a population, and the syntenic order in which those genes occur, in the new open-source network analysis platform, Graphia. Both the analysis and the visualisation are scalable to datasets of thousands of genome sequences. CONCLUSIONS: We anticipate that the approaches presented here will be of great utility to the microbial research community, allowing faster, more intuitive, and flexible interaction with pangenome datasets, thereby enhancing interpretation of these complex data.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
2.
PLoS Comput Biol ; 18(7): e1010310, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877685

RESUMEN

Graphia is an open-source platform created for the graph-based analysis of the huge amounts of quantitative and qualitative data currently being generated from the study of genomes, genes, proteins metabolites and cells. Core to Graphia's functionality is support for the calculation of correlation matrices from any tabular matrix of continuous or discrete values, whereupon the software is designed to rapidly visualise the often very large graphs that result in 2D or 3D space. Following graph construction, an extensive range of measurement algorithms, routines for graph transformation, and options for the visualisation of node and edge attributes are available, for graph exploration and analysis. Combined, these provide a powerful solution for the interpretation of high-dimensional data from many sources, or data already in the form of a network or equivalent adjacency matrix. Several use cases of Graphia are described, to showcase its wide range of applications in the analysis biological data. Graphia runs on all major desktop operating systems, is extensible through the deployment of plugins and is freely available to download from https://graphia.app/.


Asunto(s)
Algoritmos , Programas Informáticos
3.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31305886

RESUMEN

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Asunto(s)
Empalme Alternativo , Gráficos por Computador , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Isoformas de ARN/química , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo
4.
Nat Protoc ; 13(4): 705-722, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29543794

RESUMEN

A major endeavor of systems biology is the construction of graphical and computational models of biological pathways as a means to better understand their structure and function. Here, we present a protocol for a biologist-friendly graphical modeling scheme that facilitates the construction of detailed network diagrams, summarizing the components of a biological pathway (such as proteins and biochemicals) and illustrating how they interact. These diagrams can then be used to simulate activity flow through a pathway, thereby modeling its dynamic behavior. The protocol is divided into four sections: (i) assembly of network diagrams using the modified Edinburgh Pathway Notation (mEPN) scheme and yEd network editing software with pathway information obtained from published literature and databases of molecular interaction data; (ii) parameterization of the pathway model within yEd through the placement of 'tokens' on the basis of the known or imputed amount or activity of a component; (iii) model testing through visualization and quantitative analysis of the movement of tokens through the pathway, using the network analysis tool Graphia Professional and (iv) optimization of model parameterization and experimentation. This is the first modeling approach that combines a sophisticated notation scheme for depicting biological events at the molecular level with a Petri net-based flow simulation algorithm and a powerful visualization engine with which to observe the dynamics of the system being modeled. Unlike many mathematical approaches to modeling pathways, it does not require the construction of a series of equations or rate constants for model parameterization. Depending on a model's complexity and the availability of information, its construction can take days to months, and, with refinement, possibly years. However, once assembled and parameterized, a simulation run, even on a large model, typically takes only seconds. Models constructed using this approach provide a means of knowledge management, information exchange and, through the computation simulation of their dynamic activity, generation and testing of hypotheses, as well as prediction of a system's behavior when perturbed.


Asunto(s)
Biología Computacional/métodos , Gráficos por Computador , Simulación por Computador , Biología de Sistemas/métodos , Algoritmos , Redes y Vías Metabólicas , Modelos Biológicos , Mapas de Interacción de Proteínas , Programas Informáticos
5.
PLoS Biol ; 14(8): e1002530, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27509052

RESUMEN

There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here, we present a new, freely available modelling framework that includes a biologist-friendly pathway modelling language (mEPN), a simple but sophisticated method to support model parameterisation using available biological information; a stochastic flow algorithm that simulates the dynamics of pathway activity; and a 3-D visualisation engine that aids understanding of the complexities of a system's dynamics. We present example pathway models that illustrate of the power of approach to depict a diverse range of systems.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Modelos Biológicos , Transducción de Señal , Animales , Simulación por Computador , Humanos , Reproducibilidad de los Resultados
6.
F1000Res ; 3: 246, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25949802

RESUMEN

BioLayout Express (3D) is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an 'Advanced' query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...