Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Mol Biol ; 47(1): e20230202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446983

RESUMEN

Drosophila melanogaster is undoubtedly one of the most useful model organisms in biology. Initially used in solidifying the principles of heredity, and establishing the basic concepts of population genetics and of the synthetic theory of evolution, it can currently offer scientists much more: the possibility of investigating a plethora of cellular and biological mechanisms, from development and function of the immune system to animal neurogenesis, tumorigenesis and beyond. Extensive resources are available for the community of Drosophila researchers worldwide, including an ever-growing number of mutant, transgenic and genomically-edited lines currently carried by stock centers in North America, Europe and Asia. Here, we provide evidence for the importance of stock centers in sustaining the substantial increase in the output of Drosophila research worldwide in recent decades. We also discuss the challenges that Brazilian Drosophila scientists face to keep their research projects internationally competitive, and argue that difficulties in importing fly lines from international stock centers have significantly stalled the progression of all Drosophila research areas in the country. Establishing a local stock center might be the first step towards building a strong local Drosophila community that will likely contribute to all areas of life sciences research.

2.
Chem Biol Interact ; 391: 110874, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311162

RESUMEN

Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 µg/ml, as well as in Drosophila exposed up to 500 µg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.


Asunto(s)
Antineoplásicos , MicroARNs , Animales , MicroARNs/genética , Drosophila melanogaster , Hidróxidos/química , Agua , ARN Interferente Pequeño
3.
Elife ; 122023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314324

RESUMEN

Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.


From neurons to sperm, our bodies are formed of a range of cells tailored to perform a unique role. However, organisms also host small reservoirs of unspecialized 'stem cells' that retain the ability to become different kinds of cells. When these stem cells divide, one daughter cell remains a stem cell while the other undergoes a series of changes that allows it to mature into a specific cell type. This 'differentiation' process involves quickly switching off the stem cell programme, the set of genes that give a cell the ability to keep dividing while maintaining an unspecialized state. Failure to do so can result in the differentiating cell reverting towards its initial state and multiplying uncontrollably, which can lead to tumours and other health problems. While scientists have a good understanding of how the stem cell programme is turned off during differentiation, controlling these genes is a balancing act that starts even before division: if the program is over-active in the 'mother' stem cell, for instance, the systems that switch it off in its daughter can become overwhelmed. The mechanisms presiding over these steps are less well-understood. To address this knowledge gap, Rajan, Anhezini et al. set out to determine how stem cells present in the brains of fruit flies could control the level of activity of their own stem cell programme. RNA sequencing and other genetic analyses revealed that a protein unique to these cells, called Fruitless, was responsible for decreasing the activity of the programme. Biochemical experiments then showed that Fruitless performed this role by attaching a small amount of chemical modifications (called methyl groups) to the proteins that 'package' the DNA near genes involved in the stem cell programme. High levels of methyl groups present near a gene will switch off this sequence completely; however, the amount of methyl groups that Fruitless helped to deposit is multiple folds lower. Consequently, Fruitless 'fine-tunes' the activity of the stem cell programme instead, dampening it just enough to stop it from overpowering the 'off' mechanism that would take place later in the daughter cell. These results shed new light on how stem cells behave ­ and how our bodies stop them from proliferating uncontrollably. In the future, Rajan, Anhezini et al. hope that this work will help to understand and treat diseases caused by defective stem cell differentiation.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Humanos , Histonas/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Código de Histonas , Células-Madre Neurales/metabolismo , Transcripción Genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo
4.
Neurosci Insights ; 18: 26331055231151926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756280

RESUMEN

Hypertension is considered one of the most critical risk factors for COVID-19. Evidence suggests that SARS-CoV-2 infection produces intense effects on the cardiovascular system by weakening the wall of large vessels via vasa-vasorum. In this commentary, we propose that SARS-CoV-2 invades carotid and aortic baroreceptors, leading to infection of the nucleus tractus solitari (NTS) and paraventricular hypothalamic nucleus (PVN), and such dysregulation of NTS and PVN following infection causes blood pressure alteration at the central level. We additionally explored the hypothesis that SARS-CoV-2 favors the internalization of membrane ACE2 receptors generating an imbalance of the renin-angiotensin-aldosterone system (RAAS), increasing the activity of angiotensin II (ANG-II), disintegrin, and metalloproteinase 17 domain (ADAM17/TACE), eventually modulating the integration of afferents reaching the NTS from baroreceptors and promoting increased blood pressure. These mechanisms are related to the increased sympathetic activity, which leads to transient or permanent hypertension associated with SARS-CoV-2 invasion, contributing to the high number of deaths by cardiovascular implications.

5.
EMBO J ; 36(21): 3232-3249, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030483

RESUMEN

Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Histona Demetilasas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Neuroglía/metabolismo , Receptores Notch/genética , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neuroglía/citología , Unión Proteica , Dominios Proteicos , Receptores Notch/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
6.
Dev Cell ; 40(4): 367-380.e7, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28245922

RESUMEN

How the developmental potential of differentiating stem cell progeny becomes rapidly and stably restricted following asymmetric stem cell division is unclear. In the fly larval brain, earmuff (erm) uniquely functions to restrict the developmental potential of intermediate neural progenitors (INPs) generated by asymmetrically dividing neural stem cells (neuroblasts). Here we demonstrate that the histone deacetylase Hdac1/Rpd3 functions together with self-renewal transcriptional repressors to maintain the erm immature INP enhancer in an inactive but poised state in neuroblasts. Within 2 hr of immature INP birth, downregulation of repressor activities alleviates Rpd3-mediated repression on the erm enhancer, enabling acetylation of multiple histone proteins and activating Erm expression. Erm restricts the developmental potential in immature INPs by repressing genes encoding neuroblast transcriptional activators. We propose that poising the fast-activating enhancers of master regulators of differentiation through continual histone deacetylation in stem cells enables self-renewal and rapid restriction of developmental potential following asymmetric division.


Asunto(s)
División Celular Asimétrica , Autorrenovación de las Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Histona Desacetilasa 1/metabolismo , Acetilación , Animales , Secuencia de Bases , Sitios de Unión/genética , Diferenciación Celular/genética , Secuencia de Consenso/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos/genética , Retroalimentación Fisiológica , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Unión Proteica/genética , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética
7.
Genesis ; 50(9): 672-84, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22422652

RESUMEN

Larval tissues undergo programmed cell death (PCD) during Drosophila metamorphosis. PCD is triggered in a stage and tissue-specific fashion in response to ecdysone pulses. The understanding of how ecdysone induces the stage and tissue-specificity of cell death remains obscure. Several steroid-regulated primary response genes have been shown to act as key regulators of cellular responses to ecdysone by inducing a cascade of transcriptional regulation of late responsive genes. In this article, the authors identify Fhos as a gene that is required for Drosophila larval salivary gland destruction. Animals with a P-element mutation in Fhos possess persistent larval salivary glands, and precise excisions of this P-element insertion resulted in reversion of this salivary gland mutant phenotype. Fhos encodes the Drosophila homolog of mammalian Formin Fhos. Fhos is differentially transcribed during development and responds to ecdysone in a method that is similar to other cell death genes. Similarly to what has been shown for its mammalian counterpart, FHOS protein is translocated to the nucleus at later stages of cell death. Fhos mutants posses disrupted actin cytoskeleton dynamics in persistent salivary glands. Together, our data indicate that Fhos is a new ecdysone-regulated gene that is crucial for changes in the actin cytoskeleton during salivary gland elimination in Drosophila.


Asunto(s)
Autofagia/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/genética , Metamorfosis Biológica/genética , Proteínas de Microfilamentos/genética , Glándulas Salivales/fisiología , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Anticuerpos , Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Ecdisona/metabolismo , Femenino , Forminas , Regulación del Desarrollo de la Expresión Génica , Larva , Proteínas de Microfilamentos/metabolismo , Mutagénesis Insercional , Especificidad de Órganos , Fenotipo , Conejos , Proteínas Recombinantes , Glándulas Salivales/citología , Glándulas Salivales/crecimiento & desarrollo
8.
PLoS One ; 6(12): e29006, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22205988

RESUMEN

Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions.


Asunto(s)
Abejas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Insectos/metabolismo , Ovario/citología , Ovario/crecimiento & desarrollo , Testículo/citología , Testículo/crecimiento & desarrollo , Actinas/metabolismo , Animales , Anticuerpos/inmunología , Abejas/citología , Abejas/crecimiento & desarrollo , Abejas/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/inmunología , Masculino , Ovario/metabolismo , Oviposición , Transporte de Proteínas , Proteínas/metabolismo , Testículo/metabolismo
9.
Genesis ; 47(7): 492-504, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19415632

RESUMEN

The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rst(D) mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular Neuronal/genética , Muerte Celular , Proteínas de Drosophila/genética , Drosophila/citología , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Glándulas Salivales/citología , Animales , Drosophila/genética , Inmunohistoquímica , Microscopía Confocal , Microscopía Electrónica , Glándulas Salivales/ultraestructura
10.
Retina ; 28(4): 638-44, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18398368

RESUMEN

PURPOSE: To investigate potential retinal neuroprotective effects of oral lamotrigine in rabbits after pars plana vitrectomy (PPV) and intravitreal silicone oil injection (SOI). METHODS: Twelve New Zealand rabbits (weight, 2.0-2.5 kg) underwent PPV with SOI on the right eye. For 30 days postoperatively, 6 rabbits received a daily oral dose of lamotrigine (25 mg/kg), and 6 rabbits received a daily oral dose of water. The animals were killed 30 days after surgery. All retinas were processed histologically, immunostained using glial fibrillary acidic protein (GFAP), and analyzed by fluorescence microscopy. Retina sections from all groups were analyzed by TUNEL for the presence of apoptosis and stained with hematoxylin-eosin for morphologic analysis and retina cell density measurements in each layer using a Zeiss Axiophot microscope and KS 400 software. RESULTS: Retinas from water-operated eyes showed a significant decrease in cell density associated with cell death compared with retinas from water-control eyes; cell density was reduced by 56% in the outer nuclear layer (ONL), 49% in the inner nuclear layer (INL), and 64% in the ganglion cell layer (GCL). Lamotrigine-operated retinas showed a reduction in cell death when compared with water-operated retinas; cell death was reduced by 52% in the ONL, 25% in the INL, and 56% in the GCL. Water-operated retinas showed TUNEL-positive cells and GFAP immunofluorescence throughout Müller cell processes; lamotrigine-operated retinas showed no TUNEL-positive cells and decreased GFAP staining when compared with water-operated retinas. CONCLUSIONS: PPV with SOI was associated with apoptosis of retinal cells and activation of glial cells in rabbit eyes. Oral lamotrigine administration provided protection against these effects.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Retina/efectos de los fármacos , Aceites de Silicona/administración & dosificación , Triazinas/administración & dosificación , Vitrectomía , Administración Oral , Animales , Apoptosis , Recuento de Células , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Inyecciones , Lamotrigina , Microscopía Fluorescente , Conejos , Retina/metabolismo , Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...