Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38646784

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1) in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that TGFß functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the anti-fibrotic effects of SEMA3B against TGFß-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.

2.
J Exp Med ; 221(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442267

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.


Asunto(s)
Esteroide Hidroxilasas , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Esteroide Hidroxilasas/metabolismo , Tauopatías/metabolismo , Tauopatías/patología
3.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328164

RESUMEN

Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.

4.
Neuron ; 112(7): 1100-1109.e5, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38266643

RESUMEN

The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.


Asunto(s)
Apolipoproteínas E , Astrocitos , Lipoproteínas , Astrocitos/metabolismo , Apolipoproteínas E/genética , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Sistema Nervioso Central/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E3/metabolismo
5.
Radiology ; 310(1): e222509, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289219

RESUMEN

HISTORY: A 9-month-old preterm male infant born at 33 weeks gestation presented with a 2-month history of developmental decline. The parents reported that over the past several months, they noted regression of milestones, where the infant stopped smiling, crying, expressing himself, or making eye contact. The parents also reported that the infant had multiple seizures during which he would wake up stiff and stare into space for 10-20 seconds while his lips would become blue. The parents were referred to a neurologist, where physical examination was notable for hypotonia. Electroencephalography (EEG) revealed frequent bilateral parietal epileptiform discharges. The patient was subsequently started on lacosamide. The patient's medical history was notable for abnormally low citrulline levels at birth, with negative results of urea cycle disorder testing at the time, along with left inguinal hernia repair performed 3 months ago. More recent laboratory analysis had shown persistently elevated serum lactate and alanine levels. There was no history of travel, recent infection, or vaccine administration. MRI of the brain with spectroscopy was performed for further evaluation.


Asunto(s)
Enfermedad de Leigh , Recién Nacido , Lactante , Humanos , Masculino , Enfermedad de Leigh/diagnóstico por imagen , Encéfalo , Electroencefalografía , Recien Nacido Prematuro , Lacosamida
6.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37739089

RESUMEN

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Proteínas que Contienen Bromodominio , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Gemcitabina , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Neuron ; 112(3): 384-403.e8, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995685

RESUMEN

Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Colesterol , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos
8.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662218

RESUMEN

Background: Port wine birthmark (PWB) is a congenital vascular malformation resulting from developmentally defective endothelial cells (ECs). Developing clinically relevant disease models for PWB studies is currently an unmet need. Objective: Our study aims to generate PWB-derived induced pluripotent stem cells (iPSCs) and iPSC-derived ECs that preserve disease-related phenotypes. Methods: PWB iPSCs were generated by reprogramming lesional dermal fibroblasts and differentiated into ECs. RNA-seq was performed to identify differentially expressed genes (DEGs) and enriched pathways. The functional phenotypes of iPSC-derived ECs were characterized by capillary-like structure (CLS) formation in vitro and Geltrex plug-in assay in vivo . Results: Human PWB and control iPSC lines were generated through reprogramming of dermal fibroblasts by introducing the "Yamanaka factors" (Oct3/4, Sox2, Klf4, c-Myc) into them; the iPSCs were successfully differentiated into ECs. These iPSCs and their derived ECs were validated by expression of a series of stem cell and EC biomarkers, respectively. PWB iPSC-derived ECs showed impaired CLS in vitro with larger perimeters and thicker branches as compared to control iPSC-derived ECs. In the plug-in assay, perfused human vasculature formed by PWB iPSC- derived ECs showed bigger perimeters and greater densities than those formed by control iPSC- derived ECs in severe combined immune deficient (SCID) mice. The transcriptome analysis showed that dysregulated pathways of stem cell differentiation, Hippo, Wnt, and focal adhesion persisted through differentiation of PWB iPSCs to ECs. Functional enrichment analysis showed that Hippo and Wnt pathway-related PWB DEGs are enriched for vasculature development, tube morphology, endothelium development, and EC differentiation. Further, members of the zinc finger (ZNF) gene family were overrepresented among the DEGs in PWB iPSCs. ZNF DEGs confer significant functions in transcriptional regulation, chromatin remodeling, protein ubiquitination, and retinoic acid receptor signaling. Furthermore, NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were dysregulated in PWB ECs as readouts of impaired differentiation. Conclusions: PWB iPSC-derived ECs render a novel and clinically-relevant disease model by retaining pathological phenotypes. Our data demonstrate multiple pathways, such as Hippo and Wnt, NF-kappa B, TNF, MAPK, and cholesterol metabolism, are dysregulated, which may contribute to the development of differentiation-defective ECs in PWB. Bulleted statements: What is already known about this topic?: Port Wine Birthmark (PWB) is a congenital vascular malformation with an incidence rate of 0.1 - 0.3 % per live births.PWB results from developmental defects in the dermal vasculature; PWB endothelial cells (ECs) have differentiational impairments.Pulse dye laser (PDL) is currently the preferred treatment for PWB; unfortunately, the efficacy of PDL treatment of PWB has not improved over the past three decades.What does this study add?: Induced pluripotent stem cells (iPSCs) were generated from PWB skin fibroblasts and differentiated into ECs.PWB ECs recapitulated their pathological phenotypes such as forming enlarged blood vessels in vitro and in vivo.Hippo and Wnt pathways were dysregulated in PWB iPSCs and ECs.Zinc-finger family genes were overrepresented among the differentially expressed genes in PWB iPSCs.Dysregulated NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were enriched in PWB ECs.What is the translational message?: Targeting Hippo and Wnt pathways and Zinc-finger family genes could restore the physiological differentiation of ECs.Targeting NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways could mitigate the pathological progression of PWB.These mechanisms may lead to the development of paradigm-shifting therapeutic interventions for PWB.

9.
Metabolites ; 13(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755263

RESUMEN

Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring in 1-3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites were separated by ultra-performance liquid chromatography and screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs, among which nine were downregulated-including sphingosine-and 13 were upregulated, including glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant phenotypes in some PWB vasculatures.

10.
Radiology ; 308(3): e222508, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37750778

RESUMEN

HISTORY: A 9-month-old preterm male infant born at 33 weeks gestation presented with a 2-month history of developmental decline. The parents reported that over the past several months, they noted regression of milestones, where the infant stopped smiling, crying, expressing himself, or making eye contact. The parents also reported that the infant had multiple seizures during which he would wake up stiff and stare into space for 10-20 seconds while his lips would become blue. The parents were referred to a neurologist, where physical examination was notable for hypotonia. Electroencephalography (EEG) revealed frequent bilateral parietal epileptiform discharges. The patient was subsequently started on lacosamide. The patient's medical history was notable for abnormally low citrulline levels at birth, with negative results of urea cycle disorder testing at the time, along with left inguinal hernia repair performed 3 months ago. More recent laboratory analysis had shown persistently elevated serum lactate and alanine levels. There was no history of travel, recent infection, or vaccine administration. MRI of the brain with spectroscopy was performed for further evaluation (Figs 1-6).


Asunto(s)
Encéfalo , Electroencefalografía , Lactante , Recién Nacido , Humanos , Masculino , Imagen por Resonancia Magnética , Examen Físico
12.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503303

RESUMEN

Port Wine Birthmark (PWB) is a congenital vascular malformation in the skin, occurring in 1-3 per 1,000 live births. We recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, which we aimed to explore in this study. Metabolites were separated by ultra-performance liquid chromatography and were screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant analysis, multivariate and univariate analysis were used to identify differential metabolites (DMs). KEGG analysis was used for the enrichment of metabolic pathways. A total of 339 metabolites were identified. There were 22 DMs confirmed with 9 downregulated DMs including sphingosine and 13 upregulated DMs including glutathione in PWB iPSCs as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key factors associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skins. Our data demonstrate that there are perturbations in sphingolipid and cellular redox homeostasis in the PWB vasculature, which may facilitate cell survival and pathological progression. Our data imply that upregulation of glutathione may contribute to laser-resistant phenotypes in the PWB vasculature.

13.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37261910

RESUMEN

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.


Asunto(s)
Enfermedad Celíaca , Colitis Ulcerosa , Enfermedad de Crohn , ARN Largo no Codificante , Animales , Ratones , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , ARN Largo no Codificante/genética , Enfermedad Celíaca/genética , Transcriptoma , Estudios Prospectivos
14.
J Neurochem ; 165(5): 682-700, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37129420

RESUMEN

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.


Asunto(s)
Procesamiento Proteico-Postraduccional , Transducción de Señal , Ratones , Animales , Modelos Animales de Enfermedad , Sirolimus , Expresión Génica
15.
PLoS Biol ; 21(4): e3002058, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079537

RESUMEN

Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes. Analysis of 40 common human brain diseases identifies 5 major transcriptional patterns, representing tumor-related, neurodegenerative, psychiatric and substance abuse, and 2 mixed groups of diseases affecting basal ganglia and hypothalamus. Further, for diseases with enriched expression in cortex, single-nucleus data in the middle temporal gyrus (MTG) exhibits a cell type expression gradient separating neurodegenerative, psychiatric, and substance abuse diseases, with unique excitatory cell type expression differentiating psychiatric diseases. Through mapping of homologous cell types between mouse and human, most disease risk genes are found to act in common cell types, while having species-specific expression in those types and preserving similar phenotypic classification within species. These results describe structural and cellular transcriptomic relationships of disease risk genes in the adult brain and provide a molecular-based strategy for classifying and comparing diseases, potentially identifying novel disease relationships.


Asunto(s)
Encefalopatías , Transcriptoma , Adulto , Animales , Humanos , Ratones , Ganglios Basales , Encéfalo/metabolismo , Encefalopatías/genética , Encefalopatías/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Transcriptoma/fisiología , Factores de Riesgo
16.
Int J Infect Dis ; 132: 4-8, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37061212

RESUMEN

OBJECTIVES: Accurate determination of the immediate causes of death in patients with COVID-19 is important for optimal care and mitigation strategies. METHODS: All deaths in Qatar between March 01, 2020, and August 31, 2022, flagged for likely relationship to COVID-19 were reviewed by two independent, trained reviewers using a standardized methodology to determine the immediate and contributory causes of death. RESULTS: Among 749 flagged deaths, the most common admitting diagnoses were respiratory tract infection (91%) and major adverse cardiac event (MACE, 2.3%). The most common immediate causes of death were COVID-19 pneumonia (66.2%), MACE (7.1%), hospital-associated pneumonia (HAP, 6.8%), bacteremia (6.3%), disseminated fungal infection (DFI, 5.2%), and thromboembolism (4.5%). After COVID-19 pneumonia, MACE was the predominant cause of death in the first 2 weeks but declined thereafter. No death occurred due to bacteremia, HAP, or DFI in the first week after hospitalization, but became increasingly common with increased length of stay in the hospital accounting for 9%, 12%, and 10% of all deaths after 4 weeks in the hospital, respectively. CONCLUSION: Nearly one-third of patients with COVID-19 infection die of non-COVID-19 causes, some of which are preventable. Mitigation strategies should be instituted to reduce the risk of such deaths.


Asunto(s)
COVID-19 , Humanos , Causas de Muerte , SARS-CoV-2 , Hospitalización , Hospitales
17.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115208

RESUMEN

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Adulto , Humanos , Microglía/metabolismo , Metabolismo de los Lípidos/genética , Mutación con Pérdida de Función , Mutación/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptor de Prorenina
18.
Hypertension ; 80(5): 1110-1116, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912176

RESUMEN

BACKGROUND: To identify and summarize the global research literature on validation of automated noninvasive blood pressure measurement devices (BPMDs) with upper arm cuff, develop a repository of validated BPMDs in compliance with the 2020 World Health Organization technical specifications, and identify challenges and gaps in evidence base on validated BPMDs. METHODS: A scoping review was conducted. Primary research validating BPMDs complying with the 2020 World Health Organization technical specifications (ie, semiautomated/automated noninvasive devices with upper arm cuff), published in English between January 2000 and December 2021, was included. We searched MEDLINE, Web of Science, Scopus, EMBASE, CINAHL, CENTRAL, ProQuest and the dabl website. RESULTS: We included 269 studies validating 251 BPMDs across 89 manufacturers. Omron (29%), Microlife (10%), and A&D Company (8%) were the top 3 manufacturers. The 3 most frequently used validation protocols were the European Society of Hypertension-international protocol 2002 (27%), European Society of Hypertension-international protocol 2010 (25%), and modified British Hypertension Society protocol 1993 (16%), respectively. Nearly 45% of the validated BPMDs were intended for use in clinical settings, 38% were for home or self-measurement use, and 48% were for general adults. Most studies reported that BPMDs passed the validation criteria. There was inadequate reporting across studies, especially pertaining to validation settings. CONCLUSIONS: Most BPMDs fulfilled the validation criteria. However, there are considerable gaps in BPMD research in terms of geographical representation, including specific target populations and diseases/conditions, and a range of arm circumferences. Additionally, a potential strategy is required to accelerate the adoption of the Association for the Advancement of Medical Instrumentation (AAMI)/European Society of Hypertension/International Organization for Standardization Universal Standard (International Organization for Standardization 81060-2:2018) for BPMD validation.


Asunto(s)
Determinación de la Presión Sanguínea , Hipertensión , Adulto , Humanos , Presión Sanguínea , Determinación de la Presión Sanguínea/métodos , Esfigmomanometros , Organización Mundial de la Salud , Monitores de Presión Sanguínea
19.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909530

RESUMEN

The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signalling pathway. Inhibition and genetic ablation of BDR9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.

20.
Sci Transl Med ; 15(687): eabn2110, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921036

RESUMEN

Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.


Asunto(s)
Antineoplásicos , Pancreatitis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Ratones , Asparaginasa/efectos adversos , Retinoides/efectos adversos , Vitamina A/uso terapéutico , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Análisis de Sistemas , Antineoplásicos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...