Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8920, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637588

RESUMEN

Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.


Asunto(s)
Calotropis , Metales Pesados , Nerium , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Biodegradación Ambiental , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Níquel , Plantas , Monitoreo del Ambiente
2.
Plant Dis ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040224

RESUMEN

Papaya (Carica papaya L.) is grown widely in tropical and sub-tropical regions (Ahmed et al. 2008). In Pakistan, papaya production and consumption are increasing due to its medicinal, nutritional, pharmacological properties and a rich source of antioxidant, vitamin B, potassium, and magnesium. In November 2021, 26 to 35% incidence of fruit rot was observed in 15 fields of Lahore, a district of Punjab, Pakistan. Affected fruit developed circular, gray-to-brown lesions (8 to 10 mm in diameter) with white mycelia forming on the surface of lesions. In advanced stages of the disease, the lesions enlarged in size and led to the rot of entire fruit. To isolate the causal agent, small tissue segments (1 to 2 cm) were excised from 15 symptomatic fruit, surface disinfected with 1% NaClO for 30 s, rinsed with sterile distilled water three times, air dried in laminar flow hood, aseptically transferred onto petri dishes containing potato dextrose agar (PDA) and incubated at 25℃ for 5 days with a 12-h photoperiod. Eleven isolates were obtained that produced white mycelia on PDA. Flask-shaped, dark-pigmented pycnidia formed on PDA after 18 days of incubation at 25°C, which produced α-conidia measuring 4.1 to 7.2 × 1.5 to 3.0 µm and ß-conidia measuring 16.4 to 25.5 × 1.0 to 1.6 µm (n = 40). α-conidia were hyaline, fusiform, and single-celled, whereas ß-conidia were one-celled, hyaline, and filiform. The morphological characteristics of the fungus were compatible with a Diaporthe species (Gomes et al. 2013). The internal transcribed spacer region (ITS) (OM865414 and OM865415), translation elongation factor 1-alpha (tef1) (OM831226 and OM831229), and histone H3 (HIS) (OM831227 and OM831228) of two representative isolates (UO02 and UO03) were amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), and CYLH3F/H3-1b (Chaisiri et al. 2021), respectively. Blast searches showed 99 to 100% nucleotide identity with reference sequences of several Diaporthe amygdali deposited in NCBI GenBank, including the ex-type strain CBS 126679. A pathogenicity test was also performed on harvested fruit of papaya cv. Bombay using isolates UO02 and UO03. Ten mature and healthy papaya fruit were surface disinfected with 1% NaClO solution for 1 min, rinsed with sterile water and dried. Each fruit was wounded twice with a sterile scalpel (4 to 5 mm incision on the peel) and a 5-mm agar disc with mycelia of each isolate was separately placed in each wound. The wounds were wrapped with Parafilm following inoculation. Sterile PDA plugs were used in separate inoculated controls. All wounds were sealed with parafilm. All fruit were maintained in plastic boxes at 25°C with 80% relative humidity. After 6 days of incubation, rot symptoms similar to those appearing on naturally-infected fruit were observed on inoculated fruits while controls remained asymptomatic. The experiment was repeated twice with similar findings. Diaporthe amygdali was re-isolated (100%) from inoculated fruit and the pathogen identification was confirmed by morphological and molecular analysis, thus fulfilling Koch's postulates. Previously, the pathogen has been reported as a causal agent of canker and shoot blight disease in other countries (Ko and Sun, 2003; Beluzan et al. 2021). To our knowledge, this is the first report of D. amygdali on papaya in Punjab Province of Pakistan. Papaya is an emerging fruit crop in Punjab Province and it is important to further investigate the presence of this pathogen in other papaya orchards of the province since D. amygdali may cause rapid disease outbreaks resulting in severe losses.

3.
Sci Rep ; 12(1): 3736, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260596

RESUMEN

Potential role of triacontanol applied as a foliar treatment to ameliorate the adverse effects of salinity on hot pepper plants was evaluated. In this pot experiment, hot pepper plants under 75 mM NaCl stress environment were subjected to foliar application of 25, 50, and 75 µM triacontanol treatments; whereas, untreated plants were taken as control. Salt stress had a significant impact on morphological characteristics, photosynthetic pigments, gas exchange attributes, MDA content, antioxidants activities, electrolytes leakage, vitamin C, soluble protein, and proline contents. All triacontanol treatments significantly mitigated the adversative effects of salinity on hot pepper plants; however, foliar application triacontanol at 75 µM had considerably improved the growth of hot pepper plants in terms of plant height, shoot length, leaf area, plant fresh/dry biomasses by modulating above mentioned physio-biochemical traits. While, improvement in gas exchange properties, chlorophyll, carotenoid contents, increased proline contents coupled with higher SOD and CAT activities were observed in response to 75 µM triacontanol followed by 50 µM triacontanol treatment. MDA and H2O2 contents were decreased significantly in hot pepper plants sprayed with 75 µM triacontanol followed by 50 µM triacontanol foliar treatment. Meanwhile, root and shoot lengths were maximum in 50 µM triacontanol sprayed hot pepper plants along with enhanced APX activity on exposure to salt stress. In crux, exogenous application triacontanol treatments improved hot pepper performance under salinity, however,75 µM triacontanol treatment evidently was more effective in mitigating the lethal impact of saline stress via controlling the ROS generation and increment in antioxidant enzyme activities.


Asunto(s)
Capsicum , Salinidad , Antioxidantes/metabolismo , Antioxidantes/farmacología , Capsicum/metabolismo , Alcoholes Grasos , Prolina/metabolismo
4.
Sci Rep ; 11(1): 24504, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34969963

RESUMEN

Cucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L-1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L-1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L-1, and green long and marketer genotypes may be recommended for saline soil.


Asunto(s)
Cucumis sativus/fisiología , Alcoholes Grasos/metabolismo , Estrés Salino , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Alcoholes Grasos/administración & dosificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos
5.
Bull Environ Contam Toxicol ; 107(5): 946-954, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626210

RESUMEN

This study determined the effects of traffic pollutants on plants (Nerium oleander and Ricinus communis) growing along Faisalabad to Okara (R-1) and Okara to Lahore (R-2) roads in Pakistan. The photosynthetic pigments, photosynthetic rate, transpiration rate and total soluble proteins of roadside vegetation were significantly lower than control plants (50 m away from road). The average decrease in photosynthetic rate of Nerium oleander and Ricinus communis was 33.90% and 27.94% along R-1 and 41.85% and 32.409% along R-2 road, respectively. The decreased photosynthesis in roadside flora resulted in higher water use efficiency and substomatal CO2 concentration. However, higher antioxidant activity and free amino acid contents were noted in roadside plants that might be due to their defensive response to traffic pollutants. N. oleander was more affected by traffic pollutants and R. communis showed more resistance. Thus, N. oleander could be used for biomonitoring and R. communis for phytoremediation of vehicular pollution.


Asunto(s)
Monitoreo del Ambiente , Emisiones de Vehículos , Biodegradación Ambiental , Fotosíntesis , Plantas , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...