Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 233(1): 333-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22079587

RESUMEN

It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system x(c)(-)) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system x(c)(-) and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system x(c)(-), could be a novel approach for attenuating injurious neuroinflammatory cascades.


Asunto(s)
Aminoácidos Excitadores/toxicidad , Ácido Glutámico/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Enfermedades de la Médula Espinal/inducido químicamente , Enfermedades de la Médula Espinal/patología , Animales , Cistina/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Glutatión/metabolismo , Captura por Microdisección con Láser/métodos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Quinoxalinas/farmacología
2.
Drugs ; 70(18): 2343-56, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-21142258

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Until recently, most therapeutic interventions have targeted T cells in the treatment of MS. Recent data show that B cells also have a role in the pathogenesis of MS. The cerebrospinal fluid and CNS of MS patients contain B cells, plasma cells and immunoglobulins, and recent data indicate that B cells are involved in antigen presentation and T-cell activation, cytokine production, antibody secretion, demyelination and remyelination in MS. These advances in the understanding of B cells and their role in the pathophysiology of MS provide a strong rationale for B cell-targeted therapies. Recent clinical trials with rituximab highlight the possibility that B cells should be an important therapeutic target in patients with MS.


Asunto(s)
Linfocitos B/metabolismo , Sistemas de Liberación de Medicamentos , Esclerosis Múltiple/tratamiento farmacológico , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Humanos , Factores Inmunológicos , Esclerosis Múltiple/fisiopatología , Rituximab , Linfocitos T/metabolismo
3.
Anesthesiology ; 113(4): 880-91, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20808212

RESUMEN

BACKGROUND: Spinal cord ischemia and paralysis are devastating perioperative complications that can accompany open or endovascular repair surgery for aortic aneurysms. Here, we report on the development of a new mouse model of spinal cord ischemia with delayed paralysis induced by cross-clamping the descending aorta. METHODS: Transient aortic occlusion was produced in mice by cross-clamping the descending aorta through a lateral thoracotomy. To establish an optimal surgical procedure with limited mortality, variable cross-clamp times and core temperatures were tested between experiments. RESULTS: The onset of paresis or paralysis and postsurgical mortality varied as a function of cross-clamp time and core temperature that was maintained during the period of cross-clamp. Using optimal surgical parameters (7.5-min cross-clamp duration at 33°C core temperature), the onset of paralysis is delayed 24-36 h after reperfusion, and more than 95% of mice survive through 9 weeks after surgery. These mice are further stratified into two groups, 70% (n = 19/27) of mice developing severe hind limb paralysis and the remaining mice showing mild, though still permanent, behavioral deficits. CONCLUSION: This new model should prove useful as a preclinical tool for screening neuroprotective therapeutics and for defining the basic biologic mechanisms that cause delayed paralysis and neurodegeneration after transient spinal cord ischemia.


Asunto(s)
Aorta Torácica/fisiología , Parálisis/etiología , Isquemia de la Médula Espinal/etiología , Isquemia de la Médula Espinal/patología , Equilibrio Ácido-Base/fisiología , Anestesia , Animales , Conducta Animal/fisiología , Análisis de los Gases de la Sangre , Constricción , Modelos Animales de Enfermedad , Femenino , Hemodinámica/fisiología , Miembro Posterior/fisiología , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Endogámicos C57BL , Parálisis/psicología , Cuidados Posoperatorios , Daño por Reperfusión , Isquemia de la Médula Espinal/psicología , Arteria Subclavia/fisiología , Instrumentos Quirúrgicos/efectos adversos
4.
Trends Immunol ; 31(9): 332-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20691635

RESUMEN

Emerging data indicate that traumatic injury to the brain or spinal cord activates B lymphocytes, culminating in the production of antibodies specific for antigens found within and outside the central nervous system (CNS). Here, we summarize what is known about the effects of CNS injury on B cells. We outline the potential mechanisms for CNS trauma-induced B cell activation and discuss the potential consequences of these injury-induced B cell responses. On the basis of recent data, we hypothesize that a subset of autoimmune B cell responses initiated by CNS injury are pathogenic and that targeted inhibition of B cells could improve recovery in cases of brain and spinal cord injury.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/lesiones , Animales , Autoinmunidad , Humanos , Activación de Linfocitos
5.
J Neurosci ; 29(43): 13435-44, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19864556

RESUMEN

Macrophages dominate sites of CNS injury in which they promote both injury and repair. These divergent effects may be caused by distinct macrophage subsets, i.e., "classically activated" proinflammatory (M1) or "alternatively activated" anti-inflammatory (M2) cells. Here, we show that an M1 macrophage response is rapidly induced and then maintained at sites of traumatic spinal cord injury and that this response overwhelms a comparatively smaller and transient M2 macrophage response. The high M1/M2 macrophage ratio has significant implications for CNS repair. Indeed, we present novel data showing that only M1 macrophages are neurotoxic and M2 macrophages promote a regenerative growth response in adult sensory axons, even in the context of inhibitory substrates that dominate sites of CNS injury (e.g., proteoglycans and myelin). Together, these data suggest that polarizing the differentiation of resident microglia and infiltrating blood monocytes toward an M2 or "alternatively" activated macrophage phenotype could promote CNS repair while limiting secondary inflammatory-mediated injury.


Asunto(s)
Macrófagos/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Animales , Axones/fisiología , Supervivencia Celular , Células Cultivadas , Corteza Cerebral/fisiopatología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Ganglios Espinales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Monocitos/fisiología , Vaina de Mielina/metabolismo , Células Receptoras Sensoriales/fisiología , Factores de Tiempo , Degeneración Walleriana/fisiopatología
6.
J Clin Invest ; 119(10): 2990-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19770513

RESUMEN

Traumatic injury to the mammalian spinal cord activates B cells, which culminates in the synthesis of autoantibodies. The functional significance of this immune response is unclear. Here, we show that locomotor recovery was improved and lesion pathology was reduced after spinal cord injury (SCI) in mice lacking B cells. After SCI, antibody-secreting B cells and Igs were present in the cerebrospinal fluid and/or injured spinal cord of WT mice but not mice lacking B cells. In mice with normal B cell function, large deposits of antibody and complement component 1q (C1q) accumulated at sites of axon pathology and demyelination. Antibodies produced after SCI caused pathology, in part by activating intraspinal complement and cells bearing Fc receptors. These data indicate that B cells, through the production of antibodies, affect pathology in SCI. One or more components of this pathologic immune response could be considered as novel therapeutic targets for minimizing tissue injury and/or promoting repair after SCI.


Asunto(s)
Autoanticuerpos , Linfocitos B/inmunología , Regeneración Nerviosa/inmunología , Recuperación de la Función/inmunología , Traumatismos de la Médula Espinal , Animales , Autoanticuerpos/efectos adversos , Autoanticuerpos/inmunología , Conducta Animal/fisiología , Complemento C1q/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Receptores Fc/genética , Receptores Fc/inmunología , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
7.
J Neurosci Methods ; 181(1): 36-44, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19393692

RESUMEN

Historically, microglia/macrophages are quantified in the pathological central nervous system (CNS) by counting cell profiles then expressing the data as cells/mm(2). However, because it is difficult to visualize individual cells in dense clusters and in most cases it is unimportant to know the absolute number of macrophages within lesioned tissue, alternative methods may be more efficient for quantifying the magnitude of the macrophage response in the context of different experimental variables (e.g., therapeutic intervention or time post-injury/infection). The present study provides the first in-depth comparison of different techniques commonly used to quantify microglial/macrophage reactions in the pathological spinal cord. Individuals from the same and different laboratories applied techniques of digital image analysis (DIA), standard cell profile counting and a computer-assisted cell counting method with unbiased sampling to quantify macrophages in focal inflammatory lesions, disseminated lesions caused by autoimmune inflammation or at sites of spinal trauma. Our goal was to find a simple, rapid and sensitive method with minimal variability between trials and users. DIA was consistently the least variable and most time-efficient method for assessing the magnitude of macrophage responses across lesions and between users. When used to evaluate the efficacy of an anti-inflammatory treatment, DIA was 5-35 x faster than cell counting and was sensitive enough to detect group differences while eliminating inter-user variability. Since lesions are clearly defined and single profiles of microglia/macrophages are difficult to discern in most pathological specimens of brain or spinal cord, DIA offers significant advantages over other techniques for quantifying activated macrophages.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Procesamiento de Imagen Asistido por Computador/métodos , Macrófagos/patología , Macrófagos/fisiología , Médula Espinal/patología , Análisis de Varianza , Animales , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio , Recuento de Células/métodos , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Microglía/patología , Reproducibilidad de los Resultados
8.
J Neurosci ; 29(12): 3956-68, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321792

RESUMEN

Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally document the concurrent neurotoxic and neuroregenerative potential of activated macrophages. To do so, we quantified the length and magnitude of axon growth from enhanced green fluorescent protein-expressing dorsal root ganglion (DRG) neurons transplanted into the spinal cord in relationship to discrete foci of activated macrophages. Macrophages were activated via intraspinal injections of zymosan, a potent inflammatory stimulus known to increase axon growth and cause neurotoxicity. Using this approach, a significant increase in axon growth up to macrophage foci was evident. Within and adjacent to macrophages, DRG and spinal cord axons were destroyed. Macrophage toxicity became more evident when zymosan was injected closer to DRG soma. Under these conditions, DRG neurons were killed or their ability to extend axons was dramatically impaired. The concurrent induction of pro-regenerative and neurotoxic functions in zymosan-activated macrophages (ZAMs) was confirmed in vitro using DRG and cortical neurons. Importantly, the ability of ZAMs to stimulate axon growth was transient; prolonged exposure to factors produced by ZAMs enhanced cell death and impaired axon growth in surviving neurons. Lipopolysaccharide, another potent macrophage activator, elicited a florid macrophage response, but without enhancing axon growth or notable toxicity. Together, these data show that a single mode of activation endows macrophages with the ability to simultaneously promote axon regeneration and cell killing.


Asunto(s)
Axones/fisiología , Macrófagos/fisiología , Médula Espinal/ultraestructura , Animales , Animales Recién Nacidos , Encéfalo/citología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Ganglios Espinales/citología , Lipopolisacáridos/farmacología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Neuronas/trasplante , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Zimosan/farmacología
9.
J Neurochem ; 102(4): 1083-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17663750

RESUMEN

Spinal cord injury (SCI) elicits a neuroinflammatory reaction dominated by microglia and monocyte-derived macrophages (MDM). Because MDM do not infiltrate the spinal cord until days after injury, it may be possible to control whether they differentiate into neuroprotective or neurotoxic effector cells. However, doing so will require better understanding of the factors controlling MDM differentiation and activation. Our goal was to develop an in vitro model of MDM that is relevant in the context of SCI. This tool would allow future studies to define mechanisms and intracellular signaling pathways that are associated with MDM-mediated neuroprotection or neurotoxicity. We first characterized SCI-induced cytokine expression in MDM using laser capture microdissection and real-time PCR. Based on this data, we assessed which easily procurable primary macrophage subset would mimic this phenotype in vitro. We established the baseline and inductive potential of resident peritoneal, thioglycollate-elicited peritoneal and bone marrow-derived macrophages (BMDM) at the molecular, cellular and functional level. Of these cells, only BMDM retained the phenotypic, molecular and functional characteristics of MDM that infiltrate the injured spinal cord. Thus, peripheral macrophages should not be used interchangeably in vitro to model the functional consequences of the MDM response elicited by SCI.


Asunto(s)
Macrófagos/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Antígeno B7-1/metabolismo , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo/métodos , Regulación de la Expresión Génica/fisiología , Antígenos de Histocompatibilidad Clase II/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Fagocitosis/fisiología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
10.
Eur J Neurosci ; 25(7): 2053-64, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17439492

RESUMEN

Previously, we showed that autoimmune (central nervous system myelin-reactive) T cells exacerbate tissue damage and impair neurological recovery after spinal cord injury. Conversely, independent studies have shown T cell-mediated neuroprotection after spinal cord injury or facial nerve axotomy (FNAx). The antigen specificity of the neuroprotective T cells has not been investigated after FNAx. Here, we compared the neuroprotective capacity of autoimmune and non-autoimmune lymphocytes after FNAx. Prior to axotomy, C57BL/6 mice were immunized with myelin basic protein, myelin oligodendrocyte glycoprotein (MOG) or ovalbumin (a non-self antigen) emulsified in complete Freund's adjuvant (CFA). FNAx mice receiving injections of phosphate-buffered saline (PBS) only (unimmunized) or PBS/CFA emulsions served as controls. At 4 weeks after axotomy, bilateral facial motor neuron counts were obtained throughout the facial motor nucleus using unbiased stereology (optical fractionator). The data show that neuroantigen immunizations and 'generic' lymphocyte activation (e.g. PBS/CFA or ovalbumin/CFA immunizations) exacerbated neuron loss above that caused by FNAx alone. We also found that nerve injury potentiated the effector potential of autoimmune lymphocytes. Indeed, prominent forelimb and hindlimb motor deficits were accompanied by disseminated neuroinflammation and demyelination in FNAx mice receiving subencephalitogenic immunization with MOG. FNAx or neuroantigen (MOG or myelin basic protein) immunization alone did not cause these pathological changes. Thus, irrespective of the antigens used to trigger an immune response, neuropathology was enhanced when the immune system was primed in parallel with nerve injury. These data have important implications for therapeutic vaccination in clinical neurotrauma and neurodegeneration.


Asunto(s)
Antígenos/inmunología , Sistema Nervioso Central , Sistema Nervioso Periférico , Traumatismos del Sistema Nervioso , Vacunas/inmunología , Animales , Axotomía , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Nervio Facial/citología , Nervio Facial/patología , Nervio Facial/cirugía , Femenino , Adyuvante de Freund , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteína Básica de Mielina/inmunología , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito , Sistema Nervioso Periférico/inmunología , Sistema Nervioso Periférico/patología , Linfocitos T/citología , Linfocitos T/inmunología , Traumatismos del Sistema Nervioso/inmunología , Traumatismos del Sistema Nervioso/patología
11.
J Neurochem ; 99(4): 1073-87, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17081140

RESUMEN

Clinical and experimental data indicate that spinal cord injury (SCI) elicits pathological T-cell responses. Implicit in these data, but poorly understood, is that B lymphocytes (B cells) also contribute to the delayed pathophysiology of spinal trauma. Here, for the first time, we show that experimental spinal contusion injury elicits chronic systemic and intraspinal B cell activation with the emergence of a B cell-dependent organ-specific and systemic autoimmune response. Specifically, using sera from spinal cord injured mice, immunoblots reveal oligoclonal IgG reactivity against multiple CNS proteins. We also show SCI-induced synthesis of autoantibodies that bind nuclear antigens including DNA and RNA. Elevated levels of anti-DNA antibodies are a distinguishing feature of systemic lupus erythematosus and, via their ability to cross-react with neuronal antigens, can cause neuropathology. We show a similar pathologic potential for the autoantibodies produced after SCI. Thus, mammalian SCI produces marked dysregulation of B cell function (i.e. autoimmunity) with pathological potential.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/fisiopatología , Quimiotaxis de Leucocito/inmunología , Reacciones Cruzadas/inmunología , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Femenino , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/inmunología , Neuroinmunomodulación/inmunología , Ácidos Nucleicos/inmunología , Bandas Oligoclonales/inmunología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología
12.
Exp Neurol ; 190(1): 17-31, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15473977

RESUMEN

Contusive spinal cord injury (SCI) produces large fluid-, debris- and inflammatory cell-filled cystic cavities that lack structure to support significant axonal regeneration. The recent discovery of stem cells capable of generating central nervous system (CNS) tissues, coupled with success in neurotransplantation strategies, has renewed hope that repair and recovery from CNS trauma is possible. Based on results from several studies using bone marrow stromal cells (MSCs) to promote CNS repair, we transplanted MSCs into the rat SCI lesion cavity to further investigate their effects on functional recovery, lesion morphology, and axonal growth. We found that transplanted MSCs induced hindlimb airstepping--a spontaneous locomotor movement associated with activation of the stepping control circuitry--but did not alter the time course or extent of overground locomotor recovery. Using stereological techniques to describe spinal cord anatomy, we show that MSC transplants occupied the lesion cavity and were associated with preservation of host tissue and white matter (myelin), demonstrating that these cells exert neuroprotective effects. The tissue matrix formed by MSC grafts supported greater axonal growth than that found in specimens without grafts. Moreover, uniform random sampling of axon profiles revealed that the majority of neurites in MSC grafts were oriented with their long axis parallel to that of the spinal cord, suggesting longitudinally directed growth. Together, these studies support further investigation of marrow stromal cells as a potential SCI repair strategy.


Asunto(s)
Axones/fisiología , Trasplante de Médula Ósea/métodos , Traumatismos de la Médula Espinal/terapia , Células del Estroma/trasplante , Animales , Axones/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Supervivencia de Injerto , Miembro Posterior/fisiología , Masculino , Actividad Motora , Ratas , Ratas Wistar , Recuperación de la Función , Traumatismos de la Médula Espinal/patología , Células del Estroma/citología , Factores de Tiempo , Resultado del Tratamiento , Heridas no Penetrantes
13.
J Neurosci ; 24(15): 3752-61, 2004 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-15084655

RESUMEN

Myelin-reactive T-cells are activated by traumatic spinal cord injury (SCI) in rodents and humans. Despite the historical association of these cells with experimental and clinical neuropathology, recent data suggest a neuroprotective role for myelin-reactive T-cells. Because of the biological and therapeutic implications of these findings, we attempted to reproduce the original neuroprotective vaccine protocols in a model of rat SCI. Specifically, MBP-reactive T-cell function was enhanced in SCI rats via passive or active immunization. Locomotor function was assessed using a standardized locomotor rating scale (Basso-Beattie-Bresnahan scale) and was correlated with myelin and axon sparing. The functional and anatomical integrity of the rubrospinal pathway also was analyzed using the inclined plane test and anatomical tract tracing. MBP-immunized rats exhibited varying degrees of functional impairment, exacerbated lesion pathology, greater rubrospinal neuron loss, increased intraspinal T-cell accumulation, and enhanced macrophage activation relative to SCI control groups. These data are consistent with the conventional view of myelin-reactive T-cells as pathological effector cells.


Asunto(s)
Inmunización Pasiva/métodos , Proteína Básica de Mielina/inmunología , Traumatismos de la Médula Espinal/inmunología , Linfocitos T/inmunología , Vacunación/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Actividad Motora/inmunología , Vaina de Mielina/inmunología , Mielitis/inmunología , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/inmunología , Médula Espinal/inmunología , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Linfocitos T/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA