Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397843

RESUMEN

Reactive sulfur species (RSS) like hydrogen sulfide (H2S) and cysteine persulfide (Cys-SSH) emerged as key signaling molecules with diverse physiological roles in the body, depending on their concentration and the cellular environment. While it is known that H2S and Cys-SSH are produced by both colonocytes and by the gut microbiota through sulfur metabolism, it remains unknown how these RSS affect amebiasis caused by Entamoeba histolytica, a parasitic protozoan that can be present in the human gastrointestinal tract. This study investigates H2S and Cys-SSH's impact on E. histolytica physiology and explores potential therapeutic implications. Exposing trophozoites to the H2S donor, sodium sulfide (Na2S), or to Cys-SSH led to rapid cytotoxicity. A proteomic analysis of Cys-SSH-challenged trophozoites resulted in the identification of >500 S-sulfurated proteins, which are involved in diverse cellular processes. Functional assessments revealed inhibited protein synthesis, altered cytoskeletal dynamics, and reduced motility in trophozoites treated with Cys-SSH. Notably, cysteine proteases (CPs) were significantly inhibited by S-sulfuration, affecting their bacterial biofilm degradation capacity. Immunofluorescence microscopy confirmed alterations in actin dynamics, corroborating the proteomic findings. Thus, our study reveals how RSS perturbs critical cellular functions in E. histolytica, potentially influencing its pathogenicity and interactions within the gut microbiota. Understanding these molecular mechanisms offers novel insights into amebiasis pathogenesis and unveils potential therapeutic avenues targeting RSS-mediated modifications in parasitic infections.

2.
Virulence ; 15(1): 2289775, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38058008

RESUMEN

Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.


Asunto(s)
Antiinfecciosos , Parásitos , Animales , Ecosistema , Biopelículas , Farmacorresistencia Microbiana , Bacterias
3.
NPJ Biofilms Microbiomes ; 9(1): 77, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813896

RESUMEN

The human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites colonize the large intestine, primarily feeding on bacteria. However, in the gastrointestinal tract, bacterial cells form aggregates or structured communities called biofilms too large for phagocytosis. Remarkably, trophozoites are still able to invade and degrade established biofilms, utilizing a mechanism that mimics digestive exophagy. Digestive exophagy refers to the secretion of digestive enzymes that promote the digestion of objects too large for direct phagocytosis by phagocytes. E. histolytica cysteine proteinases (CPs) play a crucial role in the degradation process of Bacillus subtilis biofilm. These proteinases target TasA, a major component of the B. subtilis biofilm matrix, also contributing to the adhesion of the parasite to the biofilm. In addition, they are also involved in the degradation of biofilms formed by Gram-negative and Gram-positive enteric pathogens. Furthermore, biofilms also play an important role in protecting trophozoites against oxidative stress. This specific mechanism suggests that the amoeba has adapted to prey on biofilms, potentially serving as an untapped reservoir for novel therapeutic approaches to treat biofilms. Consistently, products derived from the amoeba have been shown to restore antibiotic sensitivity to biofilm cells. In addition, our findings reveal that probiotic biofilms can act as a protective shield for mammalian cells, hindering the progression of the parasite towards them.


Asunto(s)
Amoeba , Entamoeba histolytica , Animales , Humanos , Entamoeba histolytica/metabolismo , Fagocitosis , Tracto Gastrointestinal , Biopelículas , Mamíferos
4.
Antioxidants (Basel) ; 12(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237875

RESUMEN

Parasitic infections remain a significant public health challenge in many parts of the world, especially in developing countries [...].

5.
Cells ; 11(16)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010587

RESUMEN

Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the Q nucleobase, they must obtain it from their diet or gut microbiota. Previously, we described the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and characterized the enzyme EhTGT responsible for queuine incorporation into tRNA. At present, it is unknown how E. histolytica salvages queuine from gut bacteria. We used liquid chromatography-mass spectrometry (LC-MS) and N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. We then examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. We found that glutathione S-transferase (GST)-EhDUF2419 catalyzed the conversion of Q into queuine. Trophozoites silenced for EhDUF2419 expression are impaired in their ability to form Q-tRNA from Q or from E. coli. We also observed that Q or E. coli K12 partially protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the direct salvaging of queuine from bacteria and for the resistance of the parasite to OS.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Entamoeba histolytica/metabolismo , Escherichia coli/metabolismo , Guanina/análogos & derivados , Humanos , Parásitos/metabolismo , ARN de Transferencia/genética
6.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35624678

RESUMEN

Amebiasis is an intestinal disease transmitted by the protist parasite, Entamoeba histolytica. Lactobacillus acidophilus is a common inhabitant of healthy human gut and a probiotic that has antimicrobial properties against a number of pathogenic bacteria, fungi, and parasites. The aim of this study was to investigate the amebicide activity of L. acidophilus and its mechanisms. For this purpose, E. histolytica and L. acidophilus were co-incubated and the parasite's viability was determined by eosin dye exclusion. The level of ozidized proteins (OXs) in the parasite was determined by resin-assisted capture RAC (OX-RAC). Incubation with L. acidophilus for two hours reduced the viability of E. histolytica trophozoites by 50%. As a result of the interaction with catalase, an enzyme that degrades hydrogen peroxide (H2O2) to water and oxygen, this amebicide activity is lost, indicating that it is mediated by H2O2 produced by L. acidophilus. Redox proteomics shows that L. acidophilus triggers the oxidation of many essential amebic enzymes such as pyruvate: ferredoxin oxidoreductase, the lectin Gal/GalNAc, and cysteine proteases (CPs). Further, trophozoites of E. histolytica incubated with L. acidophilus show reduced binding to mammalian cells. These results support L. acidophilus as a prophylactic candidate against amebiasis.

7.
Front Cell Dev Biol ; 10: 841586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300430

RESUMEN

The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.

8.
Antioxidants (Basel) ; 10(8)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34439488

RESUMEN

Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.

9.
Microorganisms ; 9(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809056

RESUMEN

Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence.

10.
mBio ; 12(2)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33688012

RESUMEN

Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in [Formula: see text] Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in [Formula: see text], parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.IMPORTANCEEntamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. The gut flora is implicated in the onset of symptomatic amebiasis due to alterations in the composition of bacteria. These bacteria modulate the physiology of the parasite and affect the virulence of the parasite through unknown mechanisms. Queuine, a modified nucleobase of queuosine, is exclusively produced by the gut bacteria and leads to tRNA modification at the anticodon loops of specific tRNAs. We found that queuine induces mild oxidative stress resistance in the parasite and attenuates its virulence. Our study highlights the importance of bacterially derived products in shaping the physiology of the parasite. The fact that queuine inhibits the virulence of E. histolytica may lead to new strategies for preventing and/or treating amebiasis by providing to the host queuine directly or via probiotics.


Asunto(s)
Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/patogenicidad , Guanina/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Animales , Entamoeba histolytica/genética , Femenino , Guanina/metabolismo , Guanina/farmacología , Células HeLa , Humanos , Metilación , Ratones , Ratones Endogámicos BALB C , ARN de Transferencia/metabolismo
11.
Cell Microbiol ; 22(6): e13174, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017328

RESUMEN

Metronidazole (MNZ), the first line drug for amoebiasis and auranofin (AF), an emerging antiprotozoan drug, are both inhibiting Entamoeba histolytica thioredoxin reductase. The nature of oxidised proteins (OXs) formed in AF- or MNZ-treated E. histolytica trophozoites is unknown. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the OXs formed in AF- or MNZ-treated E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry (MS). We detected 661 OXs in MNZ-treated trophozoites and 583 OXs in AF-treated trophozoites. More than 50% of these OXs were shared, and their functions include hydrolases, enzyme modulators, transferases, nucleic acid binding proteins, oxidoreductases, cytoskeletal proteins, chaperones, and ligases. Here, we report that the formation of actin filaments (F-actin) is impaired in AF-treated trophozoites. Consequently, their erythrophagocytosis, cytopathic activity, and their motility are impaired. We also observed that less than 15% of OXs present in H2 O2 -treated trophozoites are also present in AF- or MNZ-treated trophozoites. These results strongly suggest that the formation of OXs in AF- or MNZ-treated trophozoites and in H2 O2 -treated trophozoites occurred by two different mechanisms.


Asunto(s)
Auranofina/metabolismo , Entamoeba histolytica/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Peróxido de Hidrógeno/farmacología , Dosificación Letal Mediana , Oxidorreductasas , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo , Virulencia
13.
FEBS J ; 286(20): 4135-4155, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199070

RESUMEN

Arginase, the binuclear metalloenzyme, is a potential target for therapeutic intervention in protozoan infections. Entamoeba histolytica infection causes amebiasis which is the second most common cause of protozoan-related human deaths after malaria. Here, we report the crystal structure of E. histolytica arginase (EhArg) in complex with two known inhibitors Nω -hydroxy-l-arginine (l-NOHA) and l-norvaline, and its product l-ornithine at 1.7, 2.0, and 2.4 Å, respectively. Structural and comparative analysis of EhArg-inhibitor complexes with human arginase revealed that despite only 33% sequence identity, the structural determinants of inhibitor recognition and binding are highly conserved in arginases with variation in oligomerization motifs. Knowledge regarding the spatial organization of residues making molecular contacts with inhibitory compounds enabled in the identification of four novel non-amino acid inhibitors, namely irinotecan, argatroban, cortisone acetate, and sorafenib. In vitro testing of the in silico-identified inhibitors using purified enzyme proved that irinotecan, argatroban, cortisone acetate, and sorafenib inhibit EhArg with IC50 value (mm) of 1.99, 2.40, 0.91, and 2.75, respectively, as compared to the known inhibitors l-NOHA and l-norvaline with IC50 value (mm) of 1.57 and 17.9, respectively. The identification of structure-based non-amino acid inhibitory molecules against arginase will be constructive in design and discovery of novel chemical modulators for treating amebiasis by directed therapeutics.


Asunto(s)
Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Arginina/metabolismo , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/enzimología , Inhibidores Enzimáticos/farmacología , Ornitina/metabolismo , Secuencia de Aminoácidos , Arginina/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Modelos Moleculares , Ornitina/química , Conformación Proteica , Homología de Secuencia
14.
Drug Resist Updat ; 44: 1-14, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112766

RESUMEN

Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.


Asunto(s)
Amebiasis/tratamiento farmacológico , Amebiasis/prevención & control , Amebicidas/uso terapéutico , Entamoeba histolytica/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Vacunas Antiprotozoos/administración & dosificación , Amebiasis/inmunología , Amebiasis/parasitología , Animales , Productos Biológicos/uso terapéutico , Colon/efectos de los fármacos , Colon/parasitología , Colon/patología , Reposicionamiento de Medicamentos/métodos , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/fisiología , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Parásitos/inmunología , Humanos , Hígado/efectos de los fármacos , Hígado/parasitología , Hígado/patología , Metronidazol/uso terapéutico , Interacciones Microbianas , Probióticos/uso terapéutico , Vacunas Antiprotozoos/biosíntesis , Índice de Severidad de la Enfermedad
15.
PLoS Pathog ; 14(10): e1007295, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308066

RESUMEN

Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.


Asunto(s)
Entamoeba histolytica/efectos de los fármacos , Entamebiasis/tratamiento farmacológico , Escherichia coli/fisiología , Ácido Oxaloacético/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Amebiasis/tratamiento farmacológico , Amebiasis/metabolismo , Amebiasis/parasitología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/parasitología , Células Cultivadas , Entamebiasis/metabolismo , Entamebiasis/parasitología , Células HeLa , Humanos , Intestino Grueso/efectos de los fármacos , Intestino Grueso/metabolismo , Intestino Grueso/parasitología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA
16.
Sci Rep ; 8(1): 9042, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899530

RESUMEN

Oxidative stress is one of the strongest toxic factors in nature: it can harm or even kill cells. Cellular means of subverting the toxicity of oxidative stress are important for the success of infectious diseases. Many types of bacterium inhabit the intestine, where they can encounter pathogens. During oxidative stress, we analyzed the interplay between an intestinal parasite (the pathogenic amoeba Entamoeba histolytica - the agent of amoebiasis) and enteric bacteria (microbiome residents, pathogens and probiotics). We found that live enteric bacteria protected E. histolytica against oxidative stress. By high-throughput RNA sequencing, two amoebic regulatory modes were observed with enteric bacteria but not with probiotics. The first controls essential elements of homeostasis, and the second the levels of factors required for amoeba survival. Characteristic genes of both modes have been acquired by the amoebic genome through lateral transfer from the bacterial kingdom (e.g. glycolytic enzymes and leucine-rich proteins). Members of the leucine-rich are homologous to proteins from anti-bacterial innate immune such as Toll-like receptors. The factors identified here suggest that despite its old age in evolutionary terms, the protozoan E. histolytica displays key characteristics of higher eukaryotes' innate immune systems indicating that components of innate immunity existed in the common ancestor of plants and animals.


Asunto(s)
Entamoeba histolytica/inmunología , Enterobacteriaceae/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata/inmunología , Estrés Oxidativo/inmunología , Entamoeba histolytica/genética , Entamoeba histolytica/fisiología , Enterobacteriaceae/fisiología , Escherichia coli/inmunología , Escherichia coli/fisiología , Microbioma Gastrointestinal/fisiología , Homeostasis/inmunología , Humanos , Intestinos/inmunología , Intestinos/microbiología , Intestinos/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Transcriptoma/inmunología
17.
Artículo en Inglés | MEDLINE | ID: mdl-29473019

RESUMEN

During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.


Asunto(s)
Entamebiasis/parasitología , Genómica , Metabolómica , Proteómica , Estrés Fisiológico , Adaptación Biológica , Animales , Cisteína/metabolismo , Entamoeba histolytica/fisiología , Microbioma Gastrointestinal , Genómica/métodos , Glucosa/metabolismo , Interacciones Huésped-Parásitos , Humanos , Hierro/metabolismo , Metabolómica/métodos , Estrés Oxidativo , Proteómica/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-28589096

RESUMEN

We have recently reported that Entamoeba histolytica trophozoites can adapt to toxic levels of the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). Even if the consequences of this adaptation on the modulation of gene expression in NO-adapted trophozoites (NAT) have been previously explored, insight on S-nitrosylated (SNO) proteins in NAT is missing. Our study aims to fill this knowledge gap by performing a screening of SNO proteins in NAT. Employing SNO resin-assisted capture (RAC), we identified 242 putative SNO proteins with key functions in calcium binding, enzyme modulation, redox homeostasis, and actin cytoskeleton. Of the SNO proteins in NAT, proteins that are associated with actin family cytoskeleton protein are significantly enriched. Here we report that the formation of actin filaments (F-actin) is impaired in NAT. Consequently, the ability of NAT to ingest erythrocytes and their motility and their cytopathic activity are impaired. These phenotypes can be imitated by treating control parasite with cytochalasin D (CytD), a drug that binds to F-actin polymer and prevent polymerization of actin monomers. Removal of GSNO from the culture medium of NAT restored the sensitivity of the parasite to nitrosative stress (NS) and its ability to form F-actin formation and its virulence. These results establish the central role of NO in shaping the virulence of the parasite through its effect on F-actin formation and highlight the impressive ability of this parasite to adapt to NS.


Asunto(s)
Actinas/metabolismo , Entamoeba histolytica/química , Entamoeba histolytica/metabolismo , Estrés Nitrosativo , Proteínas Protozoarias/metabolismo , S-Nitrosotioles/química , Virulencia , Citoesqueleto de Actina/metabolismo , Actinas/ultraestructura , Movimiento Celular/fisiología , Cisteína/análogos & derivados , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/patogenicidad , Eritrocitos/parasitología , Expresión Génica , Microscopía Confocal , Óxido Nítrico/farmacología , Proteolisis , Proteínas Protozoarias/genética , Trofozoítos/metabolismo , Virulencia/efectos de los fármacos
20.
RNA Biol ; 14(9): 1108-1123, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27232191

RESUMEN

A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell biology and epigenetics.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Ácidos Nucleicos/metabolismo , Animales , Sitios de Unión , Catálisis , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/clasificación , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Metilación , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Filogenia , Unión Proteica , Retroelementos , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...