Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3914, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798737

RESUMEN

Biohybrid is a newly emerging and promising approach to construct soft robotics and soft machines with novel functions, high energy efficiency, great adaptivity and intelligence. Despite many unique advantages of biohybrid systems, it is well known that most biohybrid systems have a relatively short lifetime, require complex fabrication process, and only remain functional with careful maintenance. Herein, we introduce a simple method to create a highly robust and power-free soft biohybrid mechanoluminescence, by encapsulating dinoflagellates, bioluminescent unicellular marine algae, into soft elastomeric chambers. The dinoflagellates retain their intrinsic bioluminescence, which is a near-instantaneous light response to mechanical forces. We demonstrate the robustness of various geometries of biohybrid mechanoluminescent devices, as well as potential applications such as visualizing external mechanical perturbations, deformation-induced illumination, and optical signaling in a dark environment. Our biohybrid mechanoluminescent devices are ultra-sensitive with fast response time and can maintain their light emission capability for weeks without special maintenance.


Asunto(s)
Iluminación , Robótica , Fenómenos Mecánicos
2.
ACS Appl Mater Interfaces ; 14(1): 2006-2014, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978801

RESUMEN

Liquid crystal elastomers (LCEs) are soft materials that exhibit interesting anisotropic and actuation properties. The emerging applications of thermally actuatable LCEs demand sufficient mechanical durability under various thermomechanical cycles. Although LCEs are tough at room temperature, they become very brittle at high temperature (above their actuation temperature), which can cause unexpected failure. We demonstrate a strategy to improve the high temperature fracture and fatigue properties of LCEs by designing interpenetrating polymer networks using a second polyurethane network. By selecting the appropriate composition of the polyurethane networks, the high temperature fracture and fatigue properties of LCEs were significantly enhanced, while retaining their actuation properties. The strategy from this work will help fabricate LCE-based actuators that are tough and durable at high temperatures and under cyclic loading.

3.
Sci Robot ; 6(57)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433656

RESUMEN

Fibers capable of generating axial contraction are commonly seen in nature and engineering applications. Despite the broad applications of fiber actuators, it is still very challenging to fabricate fiber actuators with combined large actuation strain, fast response speed, and high power density. Here, we report the fabrication of a liquid crystal elastomer (LCE) microfiber actuators using a facile electrospinning technique. Owing to the extremely small size of the LCE microfibers, they can generate large actuation strain (~60 percent) with a fast response speed (<0.2 second) and a high power density (400 watts per kilogram), resulting from the nematic-isotropic phase transition of liquid crystal mesogens. Moreover, no performance degradation is detected in the LCE microfibers after 106 cycles of loading and unloading with the maximum strain of 20 percent at high temperature (90 degree Celsius). The small diameter of the LCE microfiber also results in a self-oscillatory behavior in a steady temperature field. In addition, with a polydopamine coating layer, the actuation of the electrospun LCE microfiber can be precisely and remotely controlled by a near-infrared laser through photothermal effect. Using the electrospun LCE microfiber actuator, we have successfully constructed a microtweezer, a microrobot, and a light-powered microfluidic pump.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...