Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Microbiol Res ; 262: 127075, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35688099

RESUMEN

In the present study Piriformospora indica (Pi) a phyto-promotional fungus and Azotobacter chroococcumWR5 (AzWR5) a rhizobacterium, were symbiotically evaluated for their role in improving the nutritional quality of wheat (Triticum aestivum L.). Co-inoculation of Pi+AzWR5 modified root system architecture of host and along with increasing the proportion of finer roots by 88% and 92% in C306 and Hd2967 respectively. Furthermore, the synergistic impact of Pi+AzWR5 interplayed for enhanced accumulation of Zn and Fe in different plant parts including grains (3.12 and 1.33 fold respectively). Pi+AzWR5 increased the transfer factor of Zn (62%, 94%, 91% and 213%) and Fe (31%, 54%, 68% and 32%) in root, stem, leaves and grains, respectively, and translocation factor of Zn (20%, 18% and 63%) and Fe (18%, 29% and 29%) for root-stem, root-leaves and root-grains, respectively. In addition to these co-inoculation of endophytes led to several fold increase in expression of four ZIP transporter genes in roots and shoot. In addition to these symbiotic association of endophytes with host led to 3 fold increase in grain yield. We thereby conclude that co-inoculation of Pi+AzWR5 substantially improves mobilization of Zn and Fe from soil and increase its concentration in grains as well as improves crop yield.


Asunto(s)
Azotobacter , Biofortificación , Azotobacter/genética , Azotobacter/metabolismo , Basidiomycota , Endófitos/genética , Endófitos/metabolismo , Hierro/metabolismo , Raíces de Plantas/metabolismo , Triticum/microbiología , Zinc/metabolismo
3.
Curr Microbiol ; 78(12): 4072-4083, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34559288

RESUMEN

Fe deficiency is a major challenge that limits agricultural productivity and is a serious human health concern worldwide. Under iron-limiting conditions soil microorganisms produce siderophores, that chelates Fe3+ (ferric) and make it available to the plants. Selection of efficient siderophore producing bacteria and establishing their role in enhancing iron uptake is a strategic approach for improving plant nutrition. Hence 3 efficient isolates Pantoea agglomerans, Pseudomonas plecoglossida and Lactococcus lactis, selected from a repository of 154 bacteria, producing catecholate, hydroxamate and carboxylate siderophores, respectively, were assessed for Fe chelation efficiency using 59Fe and their role in plant biometric parameters, Fe uptake and antioxidant enzymes with tomato (Strategy I) and wheat (Strategy II) test plants under hydroponic system. Cell-free siderophore preparation (Sid) improved plant parameters and iron nutrition more efficiently than bacterial inoculants. Pantoea agglomerans was proven best as its 59Fe-bound siderophore complex showed the highest uptake of 4.25 and 1.59 Bq plant-1 in wheat and tomato, respectively. Further, the Fe-starved plants (1 µm Fe-EDTA) showed around two-fold higher 59Fe uptake than those raised under Fe-sufficient condition (100 µm Fe-EDTA). Results indicated that probably the bacterial mediated iron translocation in plants is Strategy III, complementing both Strategy I and II by facilitating higher availability of chelated Fe to plant reductases directly and/or through ligand exchange with phytosiderophores, respectively. This study highlights the need for integration of siderophore based formulations in INM strategies for enhancing plant iron content to address the Fe deficiency challenge of the soil and human nutrition.


Asunto(s)
Sideróforos , Solanum lycopersicum , Bacterias , Humanos , Hierro , Suelo
4.
Inorg Chem ; 60(17): 12893-12905, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34369768

RESUMEN

In glasses, a sodium ion (Na+) is a significant mobile cation that takes up a dual role, that is, as a charge compensator and also as a network modifier. As a network modifier, Na+ cations modify the structural distributions and create nonbridging oxygens. As a charge compensator, Na+ cations provide imbalanced charge for oxygen that is linked between two network-forming tetrahedra. However, the factors controlling the mobility of Na+ ions in glasses, which in turn affects the ionic conductivity, remain unclear. In the current work, using high-fidelity experiments and atomistic simulations, we demonstrate that the ionic conductivity of the Na3Al2P3O12 (Si0) glass material is dependent not only on the concentration of Na+ charge carriers but also on the number of charge-compensated oxygens within its first coordination sphere. To investigate, we chose a series of glasses formulated by the substitution of Si for P in Si0 glass based on the hypothesis that Si substitution in the presence of Na+ cations increases the number of Si-O-Al bonds, which enhances the role of Na as a charge compensator. The structural and conductivity properties of bulk glass materials are evaluated by molecular dynamics (MD) simulations, magic angle spinning-nuclear magnetic resonance, Raman spectroscopy, and impedance spectroscopy. We observe that the increasing number of charge-imbalanced bridging oxygens (BOs) with the substitution of Si for P in Si0 glass enhances the ionic conductivity by an order of magnitude-from 3.7 × 10-8 S.cm-1 to 3.3 × 10-7 S.cm-1 at 100 °C. By rigorously quantifying the channel regions in the glass structure, using MD simulations, we demonstrate that the enhanced ionic conductivity can be attributed to the increased connectivity of Na-rich channels because of the increased charge-compensated BOs around the Na atoms. Overall, this study provides new insights for designing next-generation glass-based electrolytes with superior ionic conductivity for Na-ion batteries.

5.
Phys Chem Chem Phys ; 23(28): 15245-15256, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34236065

RESUMEN

Globally, phosphor converted white-LEDs (W-LEDs) are among the most suitable sources to reduce energy consumption. Nevertheless, modernization of efficient broadband emitting phosphors is most crucial to improve the W-LED performance. Herein, we synthesized a series of novel broadband emitting Sr2-xAl3O6F:xEu2+ phosphors via a new microwave-assisted diffusion method. Rietveld refinement of the obtained X-ray diffraction results was performed to recognize the exact crystal phase and the various cationic sites. Oxygen vacancies (VO) formed under synthetic reducing conditions enabled Sr2Al3O6F to demonstrate bright self-activated bluish emission. Doping of Eu2+ ions unlocked the energy transfer process from the host to the activator ions, owing to which, the self-activated emission diminished and the Eu2+-doped sample showed amplified bluish-green emission. The gradual increase in Eu2+ concentrations regulated the controllable emissions from the bluish (0.34, 0.42) to the greenish (0.38, 0.43) zone under UV excitation. Because of the different absorption preferences of Eu2+ ions located at the different Sr2+ sites, Sr2-xAl3O6F:xEu2+ exhibited bluish-white emission under blue irradiation. A further enhancement in PL intensity had been observed by the cation substitution of Ba2+ for Sr2+ sites in the optimum Sr1.95Al3O6F:0.05Eu2+ phosphor. The as-fabricated W-LEDs utilizing the optimized Sr1.75Ba0.2Al3O6F:0.05Eu2+ phosphor exhibited a cool-white light emission along with a 372 nm NUV-LED and a 420 nm blue-LED with a moderate CRI of 70 and a CCT above 6000 K. Such cool white emission was controlled to natural white with the CCT close to 5000 K, and the CRI above 80 via utilizing a suitable red emitting phosphor. The W-LED performances of the optimized phosphor justified its applicability to produce white light for lighting applications.

7.
Appl Nanosci ; 10(11): 4191-4205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864283

RESUMEN

Membrane technology is an advanced approach to making a healthier and cleaner environment. Using such catalytic membrane technology to get clean, usable water by removal of dye impurities as well as pathogenic microbes is the main goal behind the research work. Here, we present the synthesis and efficacy study of polymethyl methacrylate (PMMA)-based Ag/ZnO/TiO2 trimetallic bifunctional nanofibers with antibacterial and photocatalytic activity. The nanofibers have been proven to be effective for the degradation of methylene blue (MB 93.4%), rhodamine B (Rh 34.6%), auramine-O (Au 65.0%) and fuchsin basic (FB 69.8%) dyes individually within 90 min in daylight. The study is further extended in abating a mixture of these dyes from contaminated water using composite nanofibers. Also, in the case of a mixture of these dyes (3 ppm each), nanofibers show dye degradation efficiency (DDE) of 90.9% (MB), 62.4% (Au) and 90.3% (FB and Rh) in 60 min. The role of Ag nanoparticles with a synergic photocatalytic effect on ZnO and TiO2 is also demonstrated. Also, PMMA/ZnO/TiO2 composite fiber membrane in synergy with silver particles shows better antibacterial activity against Gram-negative bacteria E. coli, making PMMA/Ag/ZnO/TiO2 fibers a promising candidate in water purification.

8.
Phys Chem Chem Phys ; 22(4): 2019-2032, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31904062

RESUMEN

Alkali borate glasses activated with trivalent europium ions and rooted with gold (Au) nanoparticles (NPs) were synthesised through a melt quenching process involving a selective thermochemical reduction and their applicability as photonic materials was assessed in detail. Non-linear optical (NLO) measurements were performed using a Z-scan approach in the wavelength range of 700-1000 nm. The open aperture Z-scan signatures for the Eu3+-containing glasses embedded with and without the Au NPs established a reverse saturable absorption (RSA) at all of the studied wavelengths ascribed to the two-photon absorption (2PA). Surprisingly, the nonlinear optical absorption switched to a saturable absorption (SA) with an increase in the concentration of AuCl3. With the incorporation of the Au NPs, the UV excited photoluminescence (PL) intensity of the Eu3+-doped glasses increased first as a consequence of the local field enhancement by the Au NPs, and subsequently decreased at a higher concentration of AuCl3 due to the reverse energy transfer from the Eu3+ ion to the Au0 NPs. The electronic polarization effect of the host glass enhanced the 5D0→7F4 transition intensity on the incorporation of the gold NPs owing to the gold NP-embedded glasses showing a deep-red emission. The NLO and PL studies suggested that the investigated glasses containing a 0.01 mol% of AuCl3 is practically appropriate for photonic applications.

9.
J Phys Chem B ; 123(35): 7558-7569, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31403295

RESUMEN

The present work elucidates about the structure of bioactive glasses having chemical compositions expressed as (mol %) (50.0 - x)SiO2-xB2O3-9.3Na2O-37CaO-3.7P2O5, where x = 0.0, 12.5, 25, and 37.5, and establishes a correlation between the structure and thermal stability. The structural modifications in the parent boron-free glass (B0) with the gradual substitutions of B2O3 for SiO2 are assessed by Raman and 29Si, 31P, 11B, and 23Na magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopies. The structural studies reveal the presence of QSi2 and QSi3 structural units in both silicate and borosilicate glasses. However, QSi4(3B) units additionally form upon incorporating B2O3 in B0 glass. B-containing silicate glasses exhibit both three-coordinated boron (BIII) and four-coordinated boron (BIV) units. The 31P MAS-NMR studies reveal that the majority of phosphate species exist as isolated orthophosphate (QP0) units. The incorporation of B2O3 in B0 glass increases the cross-linking between the SiO4 and BO4 structural units. However, incorporation of B2O3 lowers the glass thermal stability (ΔT), as shown by differential scanning calorimetry. Although both silicate and borosilicate glasses exhibit good in vitro apatite-forming ability and cell compatibility, the bactericidal action against Escherichia coli bacteria is more evident in borosilicate glass in comparison to silicate base glass. The controlled release of (BO3)3- ions from boron-modified bioactive glasses improves both the cell proliferation and the antibacterial properties, making them promising for hard tissue engineering applications.


Asunto(s)
Compuestos de Boro/química , Compuestos de Calcio/química , Óxidos/química , Compuestos de Fósforo/química , Silicatos/química , Materiales Biocompatibles/química , Vidrio/química , Ensayo de Materiales , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
10.
Microb Ecol ; 77(3): 676-688, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30209586

RESUMEN

Genetic and functional diversity of osmotolerant bacterial endophytes colonizing the root, stem, and leaf tissues of pearl millet genotypes differing in their drought susceptibility was assessed. Two genotypes of pearl millet, viz., the drought tolerant genotype TT-1 and the drought susceptible genotype PPMI-69, were used in the present study. Diazotrophs were found to be the predominant colonizers, followed by the Gram positive bacteria in most of the tissues of both the genotypes. Higher proportion of bacterial endophytes obtained from the drought tolerant genotype was found to be osmotolerant. Results of 16S rRNA gene-ARDRA analysis grouped 50 of the highly osmotolerant isolates into 16 clusters, out of which nine clusters had only one isolate each, indicating their uniqueness. One cluster had 21 isolates and remaining clusters were represented by isolates ranging from two to four. The representative isolates from each cluster were identified, and Bacillus was found to be the most prevalent osmotolerant genera with many different species. Other endophytic bacteria belonged to Pseudomonas sp., Stenotrophomonas sp., and Macrococcus caseolyticus. High phylogenetic diversity was observed in the roots of the drought tolerant genotype while different tissues of the drought susceptible genotype showed less diversity. Isolates of Bacillus axarquiensis were present in all the tissues of both the genotypes of pearl millet. However, most of the other endophytic bacteria showed tissue/genotype specificity. With the exception of B. axarquiensis and B. thuringiensis, rest all the species of Bacillus were found colonizing only the drought-tolerant genotype; while M. caseolyticus colonized all the tissues of only the drought susceptible genotype. There was high incidence of IAA producers and low incidence of ACC deaminase producers among the isolates from the root tissues of the drought-tolerant genotype while reverse was the case for the drought-susceptible genotype. Thus, host played an important role in the selection of endophytes based on both phylogenetic and functional traits.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Endófitos/aislamiento & purificación , Pennisetum/microbiología , Bacterias/clasificación , Bacterias/genética , Sequías , Endófitos/clasificación , Endófitos/genética , Genotipo , Pennisetum/genética , Pennisetum/fisiología , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
11.
RSC Adv ; 8(26): 14422-14433, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35540738

RESUMEN

Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries. In the research reported in this paper, NASICON-based NCAP glass (Na2.8Ca0.1Al2P3O12) was selected as the parent glass. The present study demonstrates the changes in the Na+ ion conductivity of NCAP bulk glass with the substitution of boron (NCABP: Na2.8Ca0.1Al2B0.5P2.7O12) and gallium (NCAGP: Na2.8Ca0.1Al2Ga0.5P2.7O12) for phosphorus and the resulting structural variations found in the glass network. For a detailed structural analysis of NCAP, NCABP and NCAGP glasses, micro-Raman and magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopic techniques (for 31P, 27Al, 23Na, 11B and 71Ga nuclei) were used. The Raman spectrum revealed that the NCAP glass structure is more analogous to the AlPO4 mesoporous glass structure. The 31P MAS-NMR spectrum illustrated that the NCAP glass structure consists of a high concentration of Q0 (3Al) units, followed by Q0 (2Al) units. The 27Al MAS-NMR spectrum indicates that alumina exists at five different sites, which include AlO4 units surrounded by AlO6 units, Al(OP)4, Al(OP)5, Al(OAl)6 and Al(OP)6, in the NCAP glass structure. The 31P, 27Al and 11B MAS-NMR spectra of the NCABP glass revealed the absence of B-O-Al linkages and the presence of B3-O-B4-O-P4 linkages which further leads to the formation of borate and borophosphate domains. The 71Ga MAS-NMR spectrum suggests that gallium cations in the NCAGP glass compete with the alumina cations and occupy four (GaO4), five (GaO5) and six (GaO6) coordinated sites. The Raman spectrum of NCAGP glass indicates that sodium cations have also been substituted by gallium cations in the NCAP glass structure. From impedance analysis, the dc conductivity of the NCAP glass (∼3.13 × 10-8 S cm-1) is slightly decreased with the substitution of gallium (∼2.27 × 10-8 S cm-1) but considerably decreased with the substitution of boron (∼1.46 × 10-8 S cm-1). The variation in the conductivity values are described based on the structural changes of NCAP glass with the substitution of gallium and boron.

12.
Ann Med Health Sci Res ; 4(4): 481-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25221691

RESUMEN

Sleep disordered breathing represents a continuum, ranging from simple snoring sans sleepiness, upper-airway resistance syndrome, obstructive sleep apnea (OSA) syndrome, to hypercapnic respiratory failure. Fifty seven articles formed the initial database and a final total of 50 articles were selected to form this review report. Four months were spent on the collection and retrieval of the articles. Articles were selected based on accuracy and evidence in the scientific literature. Oral appliances (OAs) are indicated for use in patients with mild to moderate OSA who prefer them to continuous positive airway pressure (CPAP) therapy, or for those who do not respond to, are not appropriate candidates for, or for those who have failed treatment attempts with CPAP. OAs protrude the mandible and hold it in a forward and downward position. As a consequence, the upper airway enlarges antero-posteriorly and laterally, improving its stability. Although OA are effective in some patients with OSA, they are not universally suitable. Compliance with OAs depends mainly on the balance between the perception of benefit and the side effects. In conclusion, marked variability is illustrated in the individual response to OA therapy and hence the treatment outcome is subjective.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 133: 318-25, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24954756

RESUMEN

Ba-La-tellurite glasses doped with Yb(3+) ions have been prepared through melt quenching technique by modifying their composition with the inclusion of varied concentration of Al2O3 to elucidate its effects on glass structural, elastic, thermal properties and Yb(3+) ion NIR luminescence performance. The FTIR spectral analysis indicates Al2O3 addition is promoting the conversion of BOs from NBOs which have been generated during the process of depolymerisation of main glass forming TeO4 units. The elastic properties of the glass revealed an improved rigidity of the glass network on addition of Al2O3. In concurrence to this, differential thermal analysis showed an increase in glass transition temperature with improved thermal stability factor. Also, Yb(3+) fluorescence dynamics demonstrated that, Al2O3 inclusion helps in restraining the detrimental radiation trapping of ∼1µm emission.


Asunto(s)
Óxido de Aluminio/química , Bario/química , Lantano/química , Telurio/química , Iterbio/química , Elasticidad , Vidrio/química , Luminiscencia , Radiación , Termodinámica , Temperatura de Transición
14.
Curr Microbiol ; 69(2): 183-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24682261

RESUMEN

Bacteria capable of degrading the sulfonated azo dye Red HE7B were isolated from textile mill effluent contaminated soil. The most efficient isolate was identified as Bacillus sp. Azo1 and the isolate could successfully decolorize up to 89% of the dye. The decolorized cultural extract analyzed by HPLC confirmed degradation. Enzymatic analysis showed twofold and fourfold increase in the activity of azoreductase and laccase enzymes, respectively, indicating involvement of both reductive and oxidative enzymes in biodegradation of Red HE7B. Degraded products which were identified by GC/MS analysis included various metabolites like 8-nitroso 1-naphthol, 2-diazonium naphthalene. Mono azo dye intermediate was initially generated from the parent molecule. This mono azo dye was further degraded by the organism, into additional products, depending on the site of cleavage of R-N=N-R molecule. Based on the degradation products identified, three different pathways have been proposed. The mechanism of degradation in two of these pathways is different from that of the previously reported pathway for azo dye degradation. This is the first report of a microbial isolate following multiple pathways for azo dye degradation. Azo dye Red HE7B was observed to be phytotoxic, leading to decrease in root development, shoot length and seedling fresh weight. However, after biotreatment the resulting degradation products were non-phytotoxic.


Asunto(s)
Compuestos Azo/metabolismo , Bacillus/metabolismo , Redes y Vías Metabólicas , Contaminantes del Suelo/metabolismo , Bacillus/aislamiento & purificación , Biotransformación , Cromatografía de Gases y Espectrometría de Masas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
15.
Artículo en Inglés | MEDLINE | ID: mdl-23685797

RESUMEN

In this work, a new and non-conventional oxide glass composition based on Bi2O3-GeO2-ZnO system has been formulated with an aim to realize low phonon oxide glass and elucidate its performance when co-doped with Ho(3+)/Yb(3+) for the energy transfer based NIR emission at 2 µm from Ho(3+) ions under Yb(3+) excitation. The glass with 1.0 mol% Ho2O3 and 0.5 mol% Yb2O3 has exhibited maximum energy transfer rate (3602 s(-1)) and energy transfer efficiency (65.92%). Important radiative properties have been predicted for emission transitions of Ho(3+) ions using intensity parameters derived from measured absorption spectra using standard Judd-Ofelt theory. At lower acceptor ion concentration (0.1 mol%), an efficient NIR to visible up-conversion emission has been observed based on two photon absorption process which has found to be reduced significantly at higher Ho(3+) concentrations with simultaneous enhancement in 2 µm emission. Hence, this newly developed glass codoped with Yb(3+)/Ho(3+) is promising glass for sensitized 2 µm emission applications as broad band tunable lasers because of the combination of low phonon energy (707 cm(-1)), high energy transfer efficiency, moderately high emission cross-section (5.33×10(-21) cm(2)) and larger effective half-width of the emission band value of 169 nm.


Asunto(s)
Bismuto/química , Germanio/química , Vidrio/química , Holmio/química , Iterbio/química , Óxido de Zinc/química , Luminiscencia
16.
Artículo en Inglés | MEDLINE | ID: mdl-22516122

RESUMEN

Two series of glasses based on high silica (CAS) and low silica calcium aluminates (LSCA) have been investigated for their structural, optical and Tb(3+) luminescence properties. The compositional modification reduces host phonon energy in LSCA glasses. Still, LSCA glasses exhibit Tb(3+) green luminescence quenching, whereas no quenching observed in CAS glasses. Material property influence on this behaviour has been discussed with an insight into the redox state of active ions.


Asunto(s)
Compuestos de Aluminio/química , Compuestos de Calcio/química , Vidrio/química , Fenómenos Ópticos , Dióxido de Silicio/química , Terbio/química , Absorción , Electrones , Iones , Peso Molecular , Refractometría , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Fluoresc ; 22(2): 745-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22048984

RESUMEN

Europium doped glass-ceramics containing BaF(2) nano-crystals have been prepared by using the controlled crystallization of melt-quenched glasses. X-ray diffraction and transmission electron microscopy have confirmed the presence of cubic BaF(2) nano-crystalline phase in glass matrix in the ceramized samples. Incorporation of rare earth ions into the formed crystalline phase having low phonon energy of 346 cm(-1) has been demonstrated from the emission spectra of Eu(3+) ions showing the transitions from upper excitation states (5)D(J) (J = 1, 2, and 3) to ground states for the glass-ceramics samples. The presence of divalent europium ions in glass and glass-ceramics samples is confirmed from the dominant blue emission corresponding to its 5d-4f transition under an excitation of 300 nm. Increase in the reduction of trivalent europium (Eu(3+)) ions to divalent (Eu(2+)) with the extent of ceramization is explained by charge compensation model based on substitution defect mechanisms. Further, the phenomenon of energy transfer from Eu(2+) to Eu(3+) ion by radiative trapping or re-absorption is evidenced which increases with the degree of ceramization. For the first time, the reduction of Eu(3+) to Eu(2+) under normal air atmospheric condition has been observed in a BaF(2) containing oxyfluoride glass-ceramics system.

18.
Biotechnol Lett ; 33(12): 2391-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21866443

RESUMEN

Glucose, maltose, and mannose as sole carbon sources, induced synthesis of glucose dehydrogenase (GDH) in three strains of Pantoea with specific activities from 0.14 to 0.6 U/mg proteins. Utilization of lactose indicated that the enzyme belongs to GDH type B isozyme. Of mutant clones, developed through radiation mutagenesis, P2-M2 utilized ribose with GDH specific activity of 0.57 U/mg protein, P4-M3 grown on glucose gave 1.5 U/mg protein and P4-M5 had high activities, when grown on galactose, maltose, and lactose. Clones P3-M2 and P2-M5 had versatile utilization of sugars and released higher amounts of P from tri-calcium phosphate and can be efficiently used for biofertilization.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Mejoramiento Genético/métodos , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/metabolismo , Pantoea/enzimología , Pantoea/efectos de la radiación , Fosfatos/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Carbono/metabolismo , Rayos gamma , Glucosa/metabolismo , Maltosa/metabolismo , Manosa/metabolismo , Mutación/efectos de la radiación , Pantoea/clasificación , Dosis de Radiación , Solubilidad , Especificidad de la Especie , Especificidad por Sustrato/efectos de la radiación
19.
Indian J Exp Biol ; 49(3): 229-33, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21452603

RESUMEN

An antibacterial metabolite extracted from Paenibacillus polymyxa HKA-15 showed strong inhibition against Xanthomonas campestris pv. phaseoli strains CP-1-1 and M-5. Minimum inhibitory concentration (MIC) of crude extract against strains CP-1-1 and M-5 was found to be 1.7 mg/ml and 1.52 mg/ml, respectively. In UV-Vis range, the absorption peak of crude extract was maximum at 240 nm. The compound is resilience to wide range of temperature, pH, surfactants and organic solvents. The complete loss of activity was observed when crude metabolite was treated with pepsin (400 unit/ml). Characterization of crude metabolite suggested its hydrophobic and peptide nature. Inhibition of Xanthomonas campestris pv. phaseoli by peptide like metabolite produced by Paenibacillus polymyxa strain HKA-15 under in vitro conditions showed ecological and biotechnological potential of strain HKA-15 to control common blight disease in beans.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/farmacología , Paenibacillus/metabolismo , Xanthomonas campestris/efectos de los fármacos , Antibacterianos/química , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Glycine max/microbiología , Xanthomonas campestris/patogenicidad
20.
Environ Monit Assess ; 175(1-4): 601-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20559712

RESUMEN

Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0-15, 15-30, 30-60 and 60-120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98-99%, as the MPN index was reduced from ≥18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.


Asunto(s)
Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos , Monitoreo del Ambiente/métodos , Escherichia coli , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...