Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Alzheimers Dement ; 20(3): 2191-2208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278517

RESUMEN

INTRODUCTION: We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS: We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS: In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION: In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Periodontitis , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Periodontitis/diagnóstico por imagen , Periodontitis/patología
2.
JAMA Netw Open ; 6(3): e232598, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920396

RESUMEN

Importance: Recent SARS-CoV-2 Omicron variant sublineages, including BA.4 and BA.5, may be associated with greater immune evasion and less protection against COVID-19 after vaccination. Objectives: To evaluate the estimated vaccine effectiveness (VE) of 2, 3, or 4 doses of COVID-19 mRNA vaccination among immunocompetent adults during a period of BA.4 or BA.5 predominant circulation; and to evaluate the relative severity of COVID-19 in hospitalized patients across Omicron BA.1, BA.2 or BA.2.12.1, and BA.4 or BA.5 sublineage periods. Design, Setting, and Participants: This test-negative case-control study was conducted in 10 states with data from emergency department (ED) and urgent care (UC) encounters and hospitalizations from December 16, 2021, to August 20, 2022. Participants included adults with COVID-19-like illness and molecular testing for SARS-CoV-2. Data were analyzed from August 2 to September 21, 2022. Exposures: mRNA COVID-19 vaccination. Main Outcomes and Measures: The outcomes of interest were COVID-19 ED or UC encounters, hospitalizations, and admission to the intensive care unit (ICU) or in-hospital death. VE associated with protection against medically attended COVID-19 was estimated, stratified by care setting and vaccine doses (2, 3, or 4 doses vs 0 doses as the reference group). Among hospitalized patients with COVID-19, demographic and clinical characteristics and in-hospital outcomes were compared across sublineage periods. Results: During the BA.4 and BA.5 predominant period, there were 82 229 eligible ED and UC encounters among patients with COVID-19-like illness (median [IQR] age, 51 [33-70] years; 49 682 [60.4%] female patients), and 19 114 patients (23.2%) had test results positive for SARS-CoV-2; among 21 007 hospitalized patients (median [IQR] age, 71 [58-81] years; 11 209 [53.4%] female patients), 3583 (17.1 %) had test results positive for SARS-CoV-2. Estimated VE against hospitalization was 25% (95% CI, 17%-32%) for receipt of 2 vaccine doses at 150 days or more after receipt, 68% (95% CI, 50%-80%) for a third dose 7 to 119 days after receipt, and 36% (95% CI, 29%-42%) for a third dose 120 days or more (median [IQR], 235 [204-262] days) after receipt. Among patients aged 65 years or older who had received a fourth vaccine dose, VE was 66% (95% CI, 53%-75%) at 7 to 59 days after vaccination and 57% (95% CI, 44%-66%) at 60 days or more (median [IQR], 88 [75-105] days) after vaccination. Among hospitalized patients with COVID-19, ICU admission or in-hospital death occurred in 21.4% of patients during the BA.1 period vs 14.7% during the BA.4 and BA.5 period (standardized mean difference: 0.17). Conclusions and Relevance: In this case-control study of COVID-19 vaccines and illness, VE associated with protection against medically attended COVID-19 illness was lower with increasing time since last dose; estimated VE was higher after receipt of 1 or 2 booster doses compared with a primary series alone.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Casos y Controles , Mortalidad Hospitalaria , Eficacia de las Vacunas , SARS-CoV-2 , Vacunación
3.
J Cyst Fibros ; 22(4): 738-744, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36717332

RESUMEN

BACKGROUND: Adults with cystic fibrosis (CF) are at increased risk for colon cancer. CF patients have reductions in intestinal bacteria that produce short chain fatty acids (SCFAs), although it is unclear whether this corresponds with intestinal SCFA levels and the presence of colonic neoplasia. The aim of this study was to compare gut microbiome and SCFA composition in patients with and without CF, and to assess associations with colonic adenomas. METHODS: Colonic aspirates were obtained from adults with and without CF undergoing colon cancer screening or surveillance colonoscopy. Microbiome characterization was performed by 16S rRNA V3-V4 sequencing. Targeted profiling of SCFAs and related metabolites was performed by LC-MS. RESULTS: 42 patients (21 CF, 21 control) were enrolled. CF patients had significantly reduced alpha diversity and decreased relative abundance of many SCFA-producing taxa. There were no significant differences in SCFA levels in CF patients, although there were reduced levels of branched chain fatty acids (BCFAs) and related metabolites. CF patients with adenomas, but not controls with adenomas, had significantly increased relative abundance of Bacteroides fragilis. CF microbiome composition was significantly associated with isovalerate concentration and the presence of adenomas. CONCLUSIONS: CF patients have marked disturbances in the gut microbiome, and CF patients with adenomas had notably increased relative abundance of B. fragilis, a pathogen known to promote colon cancer. Reductions in BCFAs but not SCFAs were found in CF. Further studies are warranted to evaluate the role of B. fragilis as well the biological significance of reductions in BCFAs in CF.


Asunto(s)
Adenoma , Neoplasias del Colon , Fibrosis Quística , Microbioma Gastrointestinal , Adulto , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos Volátiles/metabolismo , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/etiología , Adenoma/diagnóstico , Heces/microbiología
4.
Nature ; 613(7944): 558-564, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351451

RESUMEN

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-19 (refs. 1,2). However, because SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here we examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both and their sequences showed a multitude of 3CL protease mutations. In the experiment peformed with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations mediated only low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (around 100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next-generation protease inhibitors.


Asunto(s)
Antivirales , COVID-19 , Farmacorresistencia Viral , SARS-CoV-2 , Humanos , Antivirales/farmacología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Mutación , Tratamiento Farmacológico de COVID-19
5.
mSphere ; 7(6): e0040922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36218345

RESUMEN

Methicillin-susceptible Staphylococcus aureus (MSSA) is a more prevalent neonatal intensive care unit (NICU) pathogen than methicillin-resistant S. aureus (MRSA). However, the introduction and spread of MSSA, the role of systematic decolonization, and optimal infection prevention and control strategies remain incompletely understood. We previously screened infants hospitalized in a university-affiliated level III to IV NICU twice monthly over 18 months for S. aureus colonization and identified several prevalent staphylococcal protein A (spa) types. Here, we performed whole-genome sequencing (WGS) and phylogenetic comparisons of 140 isolates from predominant spa types t279, t1451, and t571 to examine possible transmission routes and identify genomic and epidemiologic features associated with the spread of dominant clones. We identified two major MSSA clones: sequence type 398 (ST398), common in the local community, and ST1898, not previously encountered in the region. ST398 NICU isolates formed distinct clusters with closely related community isolates from previously published data sets, suggesting multiple sources of acquisition, such as family members or staff, including residents of the local community. In contrast, ST1898 isolates were nearly identical, pointing to clonal expansion within the NICU. Almost all ST1898 isolates harbored plasmids encoding mupirocin resistance (mupA), suggesting an association between the proliferation of this clone and decolonization efforts with mupirocin. Comparative genomics indicated genotype-specific pathways of introduction and spread of MSSA via community-associated (ST398) or health care-associated (ST1898) sources and the potential role of mupirocin resistance in dissemination of ST1898. Future surveillance efforts could benefit from routine genotyping to inform clone-specific infection prevention strategies. IMPORTANCE Methicillin-susceptible Staphylococcus aureus (MSSA) is a significant pathogen in neonates. However, surveillance efforts in neonatal intensive care units (NICUs) have focused primarily on methicillin-resistant S. aureus (MRSA), limiting our understanding of colonizing and infectious MSSA clones which are prevalent in the NICU. Here, we identify two dominant colonizing MSSA clones during an 18-month surveillance effort in a level III to IV NICU, ST398 and ST1898. Using genomic surveillance and phylogenetic analysis, coupled with epidemiological investigation, we found that these two sequence types had distinct modes of spread, namely the suggested exchange with community reservoirs for ST398 and the contribution of antibiotic resistance to dissemination of ST1898 in the health care setting. This study highlights the additional benefits of whole-genome surveillance for colonizing pathogens, beyond routine species identification and genotyping, to inform targeted infection prevention strategies.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Recién Nacido , Lactante , Staphylococcus aureus/genética , Unidades de Cuidado Intensivo Neonatal , Staphylococcus aureus Resistente a Meticilina/genética , Mupirocina , Meticilina , Infecciones Estafilocócicas/prevención & control , Filogenia , Genómica
6.
Open Forum Infect Dis ; 9(9): ofac436, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36131846

RESUMEN

Background: Many regions have experienced successive epidemic waves of coronavirus disease 2019 (COVID-19) since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with heterogeneous differences in mortality. Elucidating factors differentially associated with mortality between epidemic waves may inform clinical and public health strategies. Methods: We examined clinical and demographic data among patients admitted with COVID-19 during the first (March-August 2020) and second (August 2020-March 2021) epidemic waves at an academic medical center in New York City. Results: Hospitalized patients (n = 4631) had lower overall and 30-day in-hospital mortality, defined as death or discharge to hospice, during the second wave (14% and 11%) than the first (22% and 21%). The wave 2 in-hospital mortality decrease persisted after adjusting for several potential confounders. Adjusting for the volume of COVID-19 admissions, a measure of health system strain, accounted for the mortality difference between waves. Several demographic and clinical patient factors were associated with an increased risk of mortality independent of wave: SARS-CoV-2 cycle threshold, do-not-intubate status, oxygen requirement, and intensive care unit admission. Conclusions: This work suggests that the increased in-hospital mortality rates observed during the first epidemic wave were partly due to strain on hospital resources. Preparations for future epidemics should prioritize evidence-based patient risks, treatment paradigms, and approaches to augment hospital capacity.

7.
mSphere ; 7(5): e0036122, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135360

RESUMEN

Clostridioides difficile infection (CDI) has a higher incidence in solid organ transplant recipients than other hospitalized patients and can lead to poor outcomes. Perturbations to the intestinal microbiome are common in patients undergoing liver transplant (LT); however, the impacts of microbial diversity and composition on risk of CDI in this patient population is incompletely understood. Here, we assessed patients in an established, longitudinal LT cohort for development of CDI within 1 year of transplant. Clinical data were compared for patients with and without CDI using univariable models. 16S rRNA sequencing of fecal samples was performed at multiple pre- and posttransplant time points to compare microbiome α- and ß-diversity and enrichment of specific taxa in patients with and without CDI. Of 197 patients who underwent LT, 18 (9.1%) developed CDI within 1 year. Pre-LT Child-Pugh class C liver disease, postoperative biliary leak, and use of broad-spectrum antibiotics were significantly associated with CDI. Patients who developed CDI had significantly lower α-diversity than patients without CDI overall and in samples collected at months 1, 3, and 6. Microbial composition (ß-diversity) differed between patients with and without CDI and across sampling time points, particularly later in their posttransplant course. We also identified 15 (8%) patients with toxigenic C. difficile colonization who did not develop CDI and may have had additional protective factors. In summary, clinical and microbiome factors are likely to converge to impart CDI risk. Along with enhanced preventive measures, there may be a role for microbiome modulation to restore microbial diversity in high-risk LT patients. IMPORTANCE Liver transplant (LT) recipients have high rates of Clostridioides difficile infection (CDI), which has been associated with poor outcomes, including graft-related complications and mortality, in prior studies. Susceptibility to CDI is known to increase following perturbations in intestinal commensal bacteria that enable germination of C. difficile spores and bacterial overgrowth. In LT patients, changes in the intestinal microbiome resulting from advanced liver disease, surgery, and other clinical factors is common and most pronounced during the early posttransplant period. However, the relationship between microbiome changes and CDI risk after LT remains unclear. In this study, we investigated clinical and microbiome factors associated with development of CDI within the first year after LT. The importance of this work is to identify patients with high-risk features that should receive enhanced preventive measures and may benefit from the study of novel strategies to reconstitute the intestinal microbiome after LT.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Trasplante de Hígado , Humanos , Clostridioides difficile/genética , ARN Ribosómico 16S/genética , Disbiosis/complicaciones , Trasplante de Hígado/efectos adversos , Infecciones por Clostridium/microbiología , Antibacterianos/uso terapéutico
8.
bioRxiv ; 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36032976

RESUMEN

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful in reducing hospitalization or death due to COVID-19 1,2 . However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities 3â€"9 , there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in increasing concentrations of nirmatrelvir using two independent approaches, including one on a large scale in 480 wells. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done at a larger scale with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones, each containing a unique mutation or a combination of mutations showed that the above precursor mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Structural explanations are discussed for some of the mutations that are proximal to the drug-binding site, as well as cross-resistance or lack thereof to ensitrelvir, another clinically important 3CL protease inhibitor. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro , and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.

9.
J Clin Virol Plus ; 2(3): 100080, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35528048

RESUMEN

Background: SARS-CoV-2 antigen-based tests are well-calibrated to infectiousness and have a critical role to play in the COVID-19 public health response. We report the development and performance of a unique lateral flow immunoassay (LFA). Methods: Combinations of several monoclonal antibodies targeting multiple antigenic sites on the SARS-CoV-2 nucleocapsid protein (NP) were isolated, evaluated, and chosen for the development of a LFA termed CoV-SCAN (BioMedomics, Inc.). Clinical point-of-care studies in symptomatic and asymptomatic individuals were conducted to evaluate positive predictive agreement (PPA) and negative predictive agreement (NPA) with RT-PCR as comparator. Results: In laboratory testing, CoV-SCAN detected 14 recombinant N-proteins of SARS-CoV-2 variants with sensitivity in the range of 0.2-3.2 ng/mL, and 10 authentic SARS-CoV-2 variants with sensitivity in the range of 1.6-12.5 TCID50/swab. No cross reactivity was observed with other human coronaviruses or other respiratory pathogens. In clinical point-of-care testing on 148 individuals over age 2 with symptoms of ≤5 days, PPA was 87.2% (CI 95: 78.3-94.8%) and NPA was 100% (CI 95: 94.2-100%). In another 884 asymptomatic individuals, PPA was 85.7% (CI 95: 42.1-99.6%) and 99.7% (99.0-99.9%). Overall, CoV-SCAN detected over 97.2% of specimens with CT values <30 and 93.8% of nasal swab specimens with the Omicron variant, even within the first 2 days after symptom onset. Conclusions: The unique construction of CoV-SCAN using two pairs of monoclonal antibodies has resulted in a test with high performance that remains durable across multiple variants in both laboratory and clinical evaluations. CoV-SCAN should identify almost all individuals harboring infectious SARS-CoV-2. Summary: Unique construction of a point-of-care rapid antigen test using two pairs of monoclonal antibodies has led to good performance that remained durable across multiple variants in laboratory and clinical evaluations. Test should identify almost all individuals harboring infectious SARS-CoV-2.

10.
medRxiv ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35547854

RESUMEN

Mutations in the viral genome of SARS-CoV-2 can impact the performance of molecular diagnostic assays. In some cases, such as S gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here we describe partial ORF1ab gene target failure (pOGTF) on the cobas ® SARS-CoV-2 assays, defined by a ≥2 thermocycles delay in detection of the ORF1ab gene compared to the E gene. We demonstrate that pOGTF is 97% sensitive and 99% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may impact transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.

11.
J Clin Microbiol ; 60(6): e0060022, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35582905

RESUMEN

Mutations in the genome of SARS-CoV-2 can affect the performance of molecular diagnostic assays. In some cases, such as S-gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here, we describe partial ORF1ab gene target failure (pOGTF) on the cobas SARS-CoV-2 assays, defined by a ≥2-thermocycle delay in detection of the ORF1ab gene compared to that of the E-gene. We demonstrate that pOGTF is 98.6% sensitive and 99.9% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may affect transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly, increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuencia de Bases , Humanos , Mutación , SARS-CoV-2/genética
12.
medRxiv ; 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35378759

RESUMEN

Many regions have experienced successive epidemic waves of COVID-19 since the emergence of SARS-CoV-2 with heterogeneous differences in mortality. Elucidating factors differentially associated with mortality between epidemic waves may inform clinical and public health strategies. We examined clinical and demographic data among patients admitted with COVID-19 during the first (March-June 2020) and second (December 2020-March 2021) epidemic waves at an academic medical center in New York City. Hospitalized patients (N=4631) had lower mortality during the second wave (14%) than the first (23%). Patients in the second wave had a lower 30-day mortality (Hazard Ratio (HR) 0.52, 95% CI 0.44, 0.61) than those in the first wave. The mortality decrease persisted after adjusting for confounders except for the volume of COVID-19 admissions (HR 0.88, 95% CI 0.70, 1.11), a measure of health system strain. Several demographic and clinical patient factors were associated with an increased risk of mortality independent of wave. Article summary: Using clinical and demographic data from COVID-19 hospitalizations at a tertiary New York City medical center, we show that a reduction in mortality during the second epidemic wave was associated with decreased strain on healthcare resources.

13.
J Antimicrob Chemother ; 77(7): 1873-1882, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35412609

RESUMEN

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated. OBJECTIVES: We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones. METHODS: We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids. RESULTS: Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species. CONCLUSIONS: Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.


Asunto(s)
Transferencia de Gen Horizontal , Infecciones por Klebsiella , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Tipificación de Secuencias Multilocus , Ciudad de Nueva York , Filogenia , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
14.
Cell Metab ; 34(5): 761-774.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35413274

RESUMEN

K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/microbiología , Estrés Fisiológico
15.
Am J Transplant ; 22(2): 649-653, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34510730

RESUMEN

Unlike immunocompetent hosts, the duration of viral persistence after infection with severe acute respiratory syndrome coronavirus 2 can be prolonged in immunosuppressed patients. Here, we present a case of viral persistence for over 19 weeks in a patient with a history of solid organ transplant and explore the clinical, virologic, and immunologic course. Our patient still demonstrated viral persistence at 138 days with low polymerase chain reaction cycle threshold values and evidence of continuing viral sequence evolution indicative of ongoing virus replication. These findings have important implications for infection prevention and control recommendations in immunosuppressed patients. Immune response, including neutralizing antibody titers, T cell activity, and cytokine levels, peaked around days 44-72 after diagnosis. Anti-S trimer antibodies were low at all time points, and T cell response was attenuated by day 119. As immune response waned and viral load increased, increased genetic diversity emerged, suggesting a mechanism for the development of viral variants.


Asunto(s)
COVID-19 , Trasplante de Órganos , Anticuerpos Antivirales , Humanos , Trasplante de Órganos/efectos adversos , SARS-CoV-2 , Carga Viral
16.
Am J Infect Control ; 50(6): 680-685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34543708

RESUMEN

BACKGROUND: Outbreaks of MRSA occur in NICUs and may be difficult to control. We describe an outbreak of mupirocin-resistant MRSA, molecular epidemiology of isolates and control. METHODS: Medical record review of personnel contact with infants. MRSA isolates were analyzed by whole genome sequencing (WGS); single nucleotide polymorphisms (SNPs) were identified. RESULTS: A 31-month outbreak of MRSA infection occurred. Weekly colonization surveillance of infants was initiated; initial prevalence was 45%. Isolates exhibited high level mupirocin-resistance. There were 3 periods of increased colonization and new infections despite implementation of multiple infection prevention interventions. During the second period, an analysis identified a frontline staff member associated with newly colonized infants whose nasal culture grew the clonal MRSA. A marked reduction in colonization followed removal from patient contact. WGS of isolates from years 1-3 showed clonality with maximum SNP differences of 33. Importantly, the year 3 isolates were more closely related to the early year 1 isolates (15-20 SNP differences) than to the late year 1 or year 2 isolates (18-33 SNP differences). DISCUSSION/CONCLUSIONS: During a recrudescent MRSA outbreak due to a clonal strain, both contact with a colonized staff member and a putative environmental or personnel reservoir were associated with MRSA acquisition.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Brotes de Enfermedades/prevención & control , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Staphylococcus aureus Resistente a Meticilina/genética , Mupirocina/farmacología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/prevención & control , Secuenciación Completa del Genoma
17.
Microbiol Spectr ; 9(2): e0005521, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643448

RESUMEN

Bacterial-viral interactions in saliva have been associated with morbidity and mortality for respiratory viruses such as influenza and SARS-CoV. However, such transkingdom relationships during SARS-CoV-2 infection are currently unknown. Here, we aimed to elucidate the relationship between saliva microbiota and SARS-CoV-2 in a cohort of newly hospitalized COVID-19 patients and controls. We used 16S rRNA sequencing to compare microbiome diversity and taxonomic composition between COVID-19 patients (n = 53) and controls (n = 59) and based on saliva SARS-CoV-2 viral load as measured using reverse transcription PCR (RT-PCR). The saliva microbiome did not differ markedly between COVID-19 patients and controls. However, we identified significant differential abundance of numerous taxa based on saliva SARS-CoV-2 viral load, including multiple species within Streptococcus and Prevotella. IMPORTANCE Alterations to the saliva microbiome based on SARS-CoV-2 viral load indicate potential biologically relevant bacterial-viral relationships which may affect clinical outcomes in COVID-19 disease.


Asunto(s)
Bacterias/clasificación , COVID-19/patología , Interacciones Microbianas/fisiología , SARS-CoV-2/aislamiento & purificación , Saliva/microbiología , Bacterias/genética , Disbiosis/microbiología , Femenino , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , Nasofaringe/microbiología , ARN Ribosómico 16S/genética , Carga Viral
18.
Nature ; 597(7878): 703-708, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34428777

RESUMEN

SARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


Asunto(s)
COVID-19/virología , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Humanos , Mutación , New York/epidemiología , Filogenia , Filogeografía , Prevalencia , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Estados Unidos/epidemiología
19.
J Pediatric Infect Dis Soc ; 10(7): 766-773, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34129043

RESUMEN

BACKGROUND: Staphylococcus aureus protein A (spa) typing can be used to expand characterization of the epidemiology of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in neonatal intensive care units (NICU). METHODS: From January 2017 to June 2018, twice-monthly surveillance for S. aureus was performed in an academically affiliated NICU. Decolonization of infants colonized with S. aureus included chlorhexidine gluconate bathing and/or mupirocin for those with mupirocin-susceptible strains. Spa typing and mupirocin-resistance testing were performed. Demographic and clinical characteristics were compared between infants colonized with MSSA vs MRSA and infants with and without the most common MSSA spa type, MSSA-t279. RESULTS: Overall, 14% and 2% of 1556 hospitalized infants had positive surveillance cultures for MSSA and MRSA, respectively. Thirty-six infants harbored unique MSSA spa types, 5 infants harbored unique MRSA spa types, and 30 MSSA and 6 MRSA spa types were identified in ≥2 infants. No outbreaks were identified during the study period. MSSA-t279 was isolated from 3% of infants and largely detected from infants hospitalized in one section of the NICU; 96% of t279 isolates were mupirocin resistant. Infection rates, length of hospitalization, and mortality were similar among infants initially colonized with t279 vs other MSSA spa types. CONCLUSIONS: The MSSA colonization burden was 5-fold larger than that of MRSA. Numerous unique spa types were identified. The most common spa type, MSSA-t279, was not associated with increased morbidity or mortality but was mupirocin resistant and associated with clustered NICU beds. This suggests potential transmission from the environment, shared staff, and/or workflow issues requiring further study. Other decolonization strategies for S. aureus in the NICU are needed.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Staphylococcus aureus Resistente a Meticilina/genética , Mupirocina , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética
20.
Cell Rep ; 35(9): 109196, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077733

RESUMEN

Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.


Asunto(s)
Aciltransferasas/metabolismo , Infecciones por Klebsiella/enzimología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/fisiología , Infecciones del Sistema Respiratorio/enzimología , Infecciones del Sistema Respiratorio/microbiología , Acetilación , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Ciclo del Ácido Cítrico , Eliminación de Gen , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/aislamiento & purificación , Lípido A/metabolismo , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Lisina/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Ratones Endogámicos C57BL , Filogenia , Procesamiento Proteico-Postraduccional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...