Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 185: 1-9, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38815529

RESUMEN

Quality assurance of a recycled product is currently one of the biggest issues that the plastic recycling industry faces. The purity of the input plastic waste stream has significant influence over the quality of the recycled product. This research evaluated the impact of polylactic acid (PLA) contamination within the input waste stream of high-density polyethylene (HDPE) recycling. The ultimate tensile strength was noted to reduce by 50% when PLA contamination was at 10%. An investigation into the effect that UVA radiation (simulating solar radiation) has on HDPE contaminated with PLA was also performed to determine the long-term effect of the bioplastic contamination. After UVA treatment, the ultimate tensile strength was reported to reduce by 51% when PLA contamination was only at 2.5%. A water contact angle analysis indicated the PLA contamination increased the hydrophilic nature of the HDPE sheets, potentially creating issues if the intended use of the recycled product was to store liquids. Microscopic analysis of the HDPE sheets contaminated with PLA showed deformations, ridges, cracks, and holes appear on the surface due to the immiscibility of the two polymers that was confirmed by FTIR analysis. Colour changes were visibly noted, with UVA exposure increasing the rate of colour change. Based on the findings in this study, PLA contamination of even 1% in a HDPE waste stream would significantly reduce the quality of the recycled product.

2.
Sci Total Environ ; 902: 166090, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553052

RESUMEN

This study casts light on the potential of microplastic generation during plastic recycling - an unintended consequence of the process. To date, microplastics have been detected in the wastewater and sludge from plastic recycling facilities; however, generation pathways, factors and minimisation strategies are understudied. The purpose of this study is to identify the factors affecting microplastic generation, namely, plastic type and weathering conditions. The size reduction phase, which involved the mechanical shredding of the plastic waste material, was identified to be the predominate source of microplastic generation. Material type was found to significantly affect microplastic generation rates. Focussing on the microplastic particles in the size range of 0.212-1.18 mm, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene (HDPE) generated 28,600 ± 3961, 21,093 ± 2211, 18,987 ± 752 and 6807 ± 393 particles/kg of plastic material shredded, respectively. The significant variations between different plastic types were correlated (R2 = 0.88) to the hardness of the plastic. Environmental weathering was observed to significantly affect microplastic generation rates. Generation rates increased for PC, PET, PP, and HDPE by 185.05 %, 159.80 %, 123.70 % and 121.74 %, respectively, over a six-month environmental exposure period. The results in this study confirm production of large amounts of microplastics from the plastic recycling industry through its operational processes, which may be a significant source for microplastic pollution if measures to reduce their production and removal from wastewater and sludge are not considered.

3.
Environ Pollut ; 334: 122226, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479173

RESUMEN

To move towards a circular society, the recyclability potential of littered plastics should be explored to provide potential value for a product that is typically destined for landfill or incineration. This study aims to understand the changes in physical, mechanical, and chemical properties of four types of plastics (polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC) and polylactic acid (PLA) after simulated environmental degradation. Plastic samples were subjected to different water matrices (in an attempt to simulate terrestrial, ocean, and river environments) to understand the role the environment plays on plastic degradation. Significant physical, mechanical, and chemical changes were observed for the PET, PP and PLA samples. Flakes and cracks were noted during the scanning electron microscopy (SEM) analysis of PET, PP and PLA illustrating the surface degradation that had occurred. Colour scanning of the samples provided complementary information about their suitability for upcycling or downcycling. Both PET and PP had visual colour changes, making them unsuitable for upcycling purposes. PLA had a significant decrease in its tensile strength in all environmental conditions, alongside significant chemical and surface change as revealed by Fourier-transform infrared (FTIR) and SEM analysis, respectively. PC had little to no changes in its chemical, mechanical, and physical properties due to high resistance to solar (UVA) degradation in presence of salt and natural organic matter in the form of humic acid. Therefore, out of the four types of plastics tested, PC was the only plastic determined to have good upcycling potential if collected from the environment. However, PET and PP could still be recycled into lower value products (i.e., construction materials).


Asunto(s)
Plásticos , Polipropilenos , Plásticos/química , Tereftalatos Polietilenos , Instalaciones de Eliminación de Residuos , Reciclaje
4.
Water Res ; 233: 119790, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870107

RESUMEN

Microplastics as vectors for contaminants in the environment is becoming a topic of public interest. Microplastics have been found to actively adsorb heavy metals, per-fluorinated alkyl substances (PFAS), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs) and polybrominated diethers (PBDs) onto their surface. Particular interest in microplastics capacity to adsorb antibiotics needs further attention due to the potential role this interaction plays on antibiotic resistance. Antibiotic sorption experiments have been documented in the literature, but the data has not yet been critically reviewed. This review aims to comprehensively assess the factors that affect antibiotic sorption onto microplastics. It is recognised that the physico- chemical properties of the polymers, the antibiotic chemical properties, and the properties of the solution all play a crucial role in the antibiotic sorption capacity of microplastics. Weathering of microplastics was found to increase the antibiotic sorption capacity by up to 171%. An increase in solution salinity was found to decrease the sorption of antibiotics onto microplastics, in some instances by 100%. pH also has a substantial effect on sorption capacity, illustrating the significance of electrostatic interactions on the sorption of antibiotics onto microplastics. The need for a uniform experimental design when testing antibiotic sorption is highlighted to remove inconsistencies in the data currently presented. Current literature examines the link between antibiotic sorption and antibiotic resistance, however, further studies are still required to fully understand this emerging global crisis.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/química , Antibacterianos , Agua , Adsorción , Contaminantes Químicos del Agua/química
5.
Environ Sci Pollut Res Int ; 26(23): 23407-23415, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31201706

RESUMEN

In many years, the nickel electroplating technique has been applied to coat nickel on other materials for their increased properties. Nickel electroplating has played a vital role in our modern society but also caused considerable environmental concerns due to the mass discharge of its wastewater (i.e. containing nickel and other heavy metals) to the environment. Thus, there is a growing need for treating nickel electroplating wastewater to protect the environment and, in tandem, recover nickel for beneficial use. This study explores a novel application of membrane distillation (MD) for the treatment of nickel electroplating wastewater for a dual purpose: facilitating the nickel recovery and obtaining fresh water. The experimental results demonstrate the technical capability of MD to pre-concentrate nickel in the wastewater (i.e. hence pave the way for subsequent nickel recovery via chemical precipitation or electrodeposition) and extract fresh water. At a low operating feed temperature of 60 °C, the MD process increased the nickel content in the wastewater by more than 100-fold from 0.31 to 33 g/L with only a 20% reduction in the process water flux and obtained pure fresh water. At such high concentration factors, the membrane surface was slightly fouled by inorganic precipitates; however, membrane pore wetting was not evident, confirmed by the purity of the obtained fresh water. The fouled membrane was effectively cleaned using a 3% HCl solution to restore its surface morphology. Finally, the preliminary thermal energy analysis of the combined MD-chemical precipitation/electrodeposition process reveals a considerable reduction in energy consumption of the nickel recovery process.


Asunto(s)
Galvanoplastia , Níquel/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Destilación , Agua Dulce , Membranas Artificiales , Níquel/química , Agua
6.
Sci Total Environ ; 650(Pt 1): 585-593, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205348

RESUMEN

This study examined the occurrence of 49 micropollutants in reclaimed water and Silver Perch (Bidyanus bidyanus) living in a reclaimed water reservoir. The numbers of micropollutants detected in reclaimed water, Silver Perch liver, and Silver Perch flesh were 20, 23, and 19, respectively. Concentrations of all micropollutants in reclaimed water, except benzotriazole, were well below the Australian Guideline for Recycled Water (AGRW) values for potable purposes. The concentration of benzotriazole in reclaimed water was 675 ±â€¯130 ng/L while the AGRW value for this compound was 7 ng/L. Not all micropollutants detected in the water phase were identified in the Silver Perch flesh and liver tissues. Likewise, not all micropollutants detected in the Silver Perch flesh and liver were identified in the reclaimed water. In general, micropollutant concentrations in the liver were higher than in the flesh. Perfluorooctane sulfonate (PFOS) was detected at a trace level in reclaimed water well below the AGRW guideline value for potable purposes, but showed a high and medium bioconcentration factor in Silver Perch liver and flesh, respectively. In addition, the risk quotient for PFOS was medium and high when considering its concentration in Silver Perch liver and flesh, respectively. Results reported here highlight the need to evaluate multiple parameters for a comprehensive risk assessment. The results also single out PFOS as a notable contaminant of concern for further investigation.

7.
Environ Sci Pollut Res Int ; 26(33): 34085-34100, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30259242

RESUMEN

High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.


Asunto(s)
Reactores Biológicos , Compuestos Orgánicos/análisis , Eliminación de Residuos Líquidos , Contaminantes del Agua/análisis , Biodegradación Ambiental , Destilación , Membranas Artificiales , Ósmosis , Salinidad , Aguas del Alcantarillado/química , Agua/química , Purificación del Agua
8.
Bioresour Technol ; 260: 221-226, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29626781

RESUMEN

This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical.


Asunto(s)
Aguas Residuales , Purificación del Agua , Membranas Artificiales , Ósmosis , Soluciones
9.
Sci Total Environ ; 566-567: 559-566, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27236621

RESUMEN

This study demonstrated a technique using forward osmosis (FO) to pre-concentrate the organic matter in raw wastewater, thereby transforming low strength wastewater into an anaerobically digestible solution. The chemical oxygen demand (COD) of raw wastewater was concentrated up to approximately eightfold at a water recovery of 90%. Thus, even low strength wastewater could be pre-concentrated by FO to the range suitable for biogas production via anaerobic treatment. Excessive salinity accumulation in pre-concentrated wastewater was successfully mitigated by adopting ionic organic draw solutes, namely, sodium acetate, and EDTA-2Na. These two draw solutes are also expected to benefit the digestibility of the pre-concentrated wastewater compared to the commonly used draw solute sodium chloride. Significant membrane fouling was observed when operating at 90% water recovery using raw wastewater. Nevertheless, membrane fouling was reversible and was effectively controlled by optimising the hydrodynamic conditions of the cross-flow FO system.


Asunto(s)
Membranas Artificiales , Ósmosis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Salinidad
10.
Bioresour Technol ; 191: 30-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25978854

RESUMEN

Forward osmosis (FO) can be used to extract clean water and pre-concentrate municipal wastewater to make it amenable to anaerobic treatment. A protocol was developed to assess the suitability of FO draw solutes for pre-concentrating wastewater for potential integration with anaerobic treatment to facilitate resource recovery from wastewater. Draw solutes were evaluated in terms of their ability to induce osmotic pressure, water flux, and reverse solute flux. The compatibility of each draw solute with subsequent anaerobic treatment was assessed by biomethane potential analysis. The effect of each draw solute (at concentrations corresponding to the reverse solute flux at ten-fold pre-concentration of wastewater) on methane production was also evaluated. The results show that ionic organic draw solutes (e.g., sodium acetate) were most suitable for FO application and subsequent anaerobic treatment. On the other hand, the reverse solute flux of inorganic draw solutions could inhibit methane production from FO pre-concentrated wastewater.


Asunto(s)
Electroósmosis/métodos , Soluciones/química , Aguas Residuales/química , Agua/química , Metano/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...