Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2023: 7838299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146392

RESUMEN

Acne vulgaris is an inflammatory skin condition that affects virtually everyone at some point. Papules, comedones, pustules, scarring, and nodules are standard features of the disease and can have a detrimental social and psychological impact on an individual. Although allopathic acne treatments are available, they have adverse side effects, are expensive, and are prone to cause antibiotic resistance. The present study is aimed at formulating and evaluating topical gels containing Aloe vera, Allium cepa, and Eucalyptus globulus extracts as potential antiacne drugs. Six formulations containing the herbal extracts were prepared using 1% Carbopol 940 as a gelling agent. The phytochemical composition of the plant extracts was determined. The extracts and gels' minimum inhibitory concentration (MIC) was assessed using the microbroth dilution method. The physicochemical properties of the formulated gels, such as homogeneity, colour, texture, odour, grittiness, spreadability, extrudability, viscosity, pH, and drug content, were evaluated. All the plant extracts contained alkaloids, flavonoids, tannins, triterpenoids, and coumarins. The gel formulations showed varying activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa at various concentrations. The phytochemical components of the plant extracts are probably responsible for the antimicrobial activity of the gel formulations. The 5% Aloe vera-Allium cepa (1 : 1) combination gel formulation showed excellent activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans, with MICs of 12.50, 25.00, 6.25, 25.00, and 12.50 mg/mL, respectively. The gels generally had good physicochemical and antimicrobial properties and could be used as antiacne remedies.


Asunto(s)
Acné Vulgar , Antiinfecciosos , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Acné Vulgar/tratamiento farmacológico , Fitoquímicos/farmacología , Pruebas de Sensibilidad Microbiana , Candida albicans , Geles/farmacología , Escherichia coli
2.
ScientificWorldJournal ; 2022: 9810099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401058

RESUMEN

Excipients are components other than active ingredients that are added to pharmaceutical formulations. Naturally sourced excipients are gradually gaining preeminence over synthetically sourced excipients due to local availability and continuous supply. This study aimed to investigate the binding and disintegrating characteristics of gum extracted from the bark of Melia azedarach tree. The bark of Melia azedarach was harvested from Kwahu Asasraka in Ghana. The gum was extracted with ethanol (96%), and the percentage yield, phytochemical constituents, and flow characteristics were assessed. As a disintegrant, the gum was utilized to formulate granules at varying concentrations of 5% w/w and 10% w/w using starch as the standard. The gum was also utilized to prepare granules at varying concentrations of 10% w/v and 20% w/v as a binder, with tragacanth gum serving as the reference. Eight batches of tablets were produced from the granules. The formulated tablets from each batch were then subjected to quality control testing, which included uniformity of weight, friability, disintegration, hardness, drug content, and dissolution tests, respectively. Tannins, saponins, alkaloids, and glycosides were identified in the Melia azedarach gum. The gum had a percentage yield of 67.75% and also exhibited good flow properties. All tablets passed the uniformity of weight, friability, disintegration, hardness, dissolution, and drug content tests, respectively. According to the findings of the study, Melia azedarach gum can be utilized as an excipient in place of tragacanth and starch as a binder and disintegrant, respectively, in immediate-release tablets.


Asunto(s)
Melia azedarach , Tragacanto , Química Farmacéutica , Excipientes/química , Solubilidad , Almidón , Comprimidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA