Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(10): 6311-6321, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38482895

RESUMEN

BACKGROUND: As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS: The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION: The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.


Asunto(s)
Olea , Enfermedades de las Plantas , Olea/microbiología , Olea/química , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Algas Marinas/microbiología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Productos Biológicos/farmacología , Productos Biológicos/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Verticillium
2.
J Fungi (Basel) ; 10(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392810

RESUMEN

Verticillium wilt of olive (VWO) caused by Verticillium dahliae is considered a major olive (Olea europaea) disease in Mediterranean-type climate regions. The lack of effective chemical products against VWO makes it necessary to search for alternatives such as biological control. The main goal of this study was to evaluate the effect of six Streptomyces spp. strains as biological control agents (BCAs) against VWO. All of them were molecularly characterized by sequencing 16S or 23S rRNA genes and via phylogenetic analysis. Their effect was evaluated in vitro on the mycelial growth of V. dahliae (isolates V004 and V323) and on microsclerotia (MS) viability using naturally infested soils. Bioassays in olive plants inoculated with V. dahliae were also conducted to evaluate their effect against disease progress. In all the experiments, the reference BCAs Fusarium oxysporum FO12 and Aureobasidium pullulans AP08 were included for comparative purposes. The six strains were identified as Streptomyces spp., and they were considered as potential new species. All the BCAs, including Streptomyces strains, showed a significant effect on mycelial growth inhibition for both V. dahliae isolates compared to the positive control, with FO12 being the most effective, followed by AP08, while the Streptomyces spp. strains showed an intermediate effect. All the BCAs tested also showed a significant effect on the inhibition of germination of V. dahliae MS compared to the untreated control, with FO12 being the most effective treatment. Irrigation treatments with Streptomyces strain CBQ-EBa-21 or FO12 were significantly more effective in reducing disease severity and disease progress in olive plants inoculated with V. dahliae compared to the remaining treatments. This study represents the first approach to elucidating the potential effect of Streptomyces strains against VWO.

3.
Plant Dis ; 107(12): 3737-3753, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37486269

RESUMEN

In 2016, an almond (Prunus dulcis) decline syndrome (ADS) emerged in intensive almond plantations in the Andalusia region (southern Spain), showing branch dieback, gummosis, and general tree decline. The aim of this work was to elucidate the etiology of this disease complex. For this purpose, surveys were conducted across the Andalusia region, and a wide collection of fungi was recovered from wood samples showing gum and internal discoloration. Representative isolates were selected and identified by sequencing ITS, TEF1, TUB, ACT, LSU, and/or RPB2 genes. The following fungal species were identified to be associated with the disease: Botryosphaeria dothidea, Diplodia corticola, Di. seriata, Dothiorella iberica, Lasiodiplodia viticola, Macrophomina phaseolina, Neofusicoccum mediterraneum, N. parvum, N. vitifusiforme, Diaporthe neotheicola, Dia. rhusicola, Dia. ambigua, Eutypa lata, E. tetragona, Eutypella citricola, Eu. microtheca, Fusarium oxysporum s.l., Pleurostoma richardsiae, Phaeoacremonium iranianum, Pm. krajdenii, Pm. parasiticum, and Cytospora sp. All isolates were tested for pathogenicity by inoculating detached or attached almond shoots. Di. corticola and N. parvum were the most aggressive species, showing the largest lesions and most gummosis in attached shoots. The results suggest that the species belonging to Botryosphaeriaceae play a key role in disease development, while the remaining identified species may act as secondary pathogens or endophytes. However, further research to determine the interaction between all these fungal species and other biotic and abiotic factors in the ADS progress is needed.


Asunto(s)
Fusarium , Prunus dulcis , España
4.
Plant Dis ; 106(11): 2920-2926, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35380463

RESUMEN

Botryosphaeriaceae and Diaporthe fungi have been described as the main causal agents of branch dieback and shoot blight of English walnut (Juglans regia L.). To date, the effects of biotic and abiotic factors on disease development on this host are still poorly understood. Thus, the main goal of this study was to evaluate the effects of cultivar, shoot-branch age, and temperature on infection by Botryosphaeriaceae and Diaporthe fungi on English walnut. The susceptibility of eight commercial cultivars was evaluated against three Botryosphaeriaceae and two Diaporthe species. For the remaining experiments, shoots or branches of 'Chandler' were used. An initial experiment evaluating two inoculation methods was conducted, with inoculation with a mycelial plug being more consistent and useful than conidial suspension inoculation. Cultivar susceptibility varied depending on the fungal species, with 'Chandler' being among the most tolerant cultivars for shoot infection. One-year-old shoots were significantly more sensitive for both Neofusicoccum parvum and Diaporthe neotheicola in comparison with 2- to 4-year-old branches. The effect of temperature on shoot infection was evaluated under 5, 10, 15, 20, 25, 30, and 35°C. Lesion development was significantly higher for N. parvum isolates than for D. neotheicola isolates at all temperatures evaluated, with optimum temperature of shoot infection being ∼26°C for N. parvum and ∼21°C for D. neotheicola.


Asunto(s)
Juglans , Saccharomycetales , Temperatura , Enfermedades de las Plantas/microbiología , Nueces
5.
J Fungi (Basel) ; 8(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35205893

RESUMEN

The effect of mineral nutrition on wilt diseases has been previously reported in many herbaceous hosts, though such an effect on Verticillium wilt in olive (Olea europaea L.; VWO), caused by Verticillium dahliae, is still uncertain. Field observations reveal that nitrogen (N) excess or imbalances of N-potassium (K) favour VWO epidemics. However, this has yet to be demonstrated. Thus, the aim of this study was to evaluate the influences of nutritional imbalances of N and K in V. dahliae infection of olive. To this end, adjusted treatments with N excess (↑N+↑Na), K deficiency (↓K) and their combination (↑N+↑Na+↓K) were evaluated on the viability of V. dahliae microsclerotia (MS), as well as on disease development in olive plants. In parallel, the potential indirect effect of the treatments on the viability of conidia and MS of V. dahliae was evaluated through the stimuli of root exudates. Treatments ↑N+↑Na and ↑N+↑Na+↓K decreased MS germination and disease progress, whereas ↓K significantly increased both parameters. Root exudates from treated plants increased the conidia germination of V. dahliae but reduced the MS germination. The results of this study will be the basis for planning further research towards a better understanding of the effect of mineral nutrition on VWO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...