Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(7): e1012283, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024398

RESUMEN

All fields of science depend on mathematical models. Occam's razor refers to the principle that good models should exclude parameters beyond those minimally required to describe the systems they represent. This is because redundancy can lead to incorrect estimates of model parameters from data, and thus inaccurate or ambiguous conclusions. Here, we show how deep learning can be powerfully leveraged to apply Occam's razor to model parameters. Our method, FixFit, uses a feedforward deep neural network with a bottleneck layer to characterize and predict the behavior of a given model from its input parameters. FixFit has three major benefits. First, it provides a metric to quantify the original model's degree of complexity. Second, it allows for the unique fitting of data. Third, it provides an unbiased way to discriminate between experimental hypotheses that add value versus those that do not. In three use cases, we demonstrate the broad applicability of this method across scientific domains. To validate the method using a known system, we apply FixFit to recover known composite parameters for the Kepler orbit model and a dynamic model of blood glucose regulation. In the latter, we demonstrate the ability to fit the latent parameters to real data. To illustrate how the method can be applied to less well-established fields, we use it to identify parameters for a multi-scale brain model and reduce the search space for viable candidate mechanisms.


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Biología Computacional/métodos , Humanos , Redes Neurales de la Computación , Glucemia/metabolismo , Algoritmos , Modelos Teóricos , Modelos Biológicos
2.
PNAS Nexus ; 3(5): pgae196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38818236

RESUMEN

The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.

3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662316

RESUMEN

1.The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-P-hydroxybutyrate (D-ßHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ßHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D- PHb rescued neuronal functions associated with axonal conduction, synchronization and LTP.

4.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014139

RESUMEN

The integration-segregation framework is a popular first step to understand brain dynamics because it simplifies brain dynamics into two states based on global vs. local signaling patterns. However, there is no consensus for how to best define what the two states look like. Here, we map integration and segregation to order and disorder states from the Ising model in physics to calculate state probabilities, Pint and Pseg, from functional MRI data. We find that integration/segregation decreases/increases with age across three databases, and changes are consistent with weakened connection strength among regions rather than topological connectivity based on structural and diffusion MRI data.

5.
Neuropsychopharmacology ; 48(5): 797-805, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35995971

RESUMEN

Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-ßHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-ßHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-ßHB compared to active control glucose (N = 26). Effect of age and blood levels of D-ßHB and glucose were used to further explore the effect of D-ßHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-ßHB. Importantly, the effect was specific to D-ßHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-ßHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.


Asunto(s)
Ácido Glutámico , Giro del Cíngulo , Humanos , Adulto , Ácido 3-Hidroxibutírico/farmacología , Ácido Glutámico/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Cetonas , Espectroscopía de Protones por Resonancia Magnética , Glucosa , Ácido gamma-Aminobutírico
6.
Elife ; 112022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35608247

RESUMEN

Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30 of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed. Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum, cerebellum, and putamen, with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area, orbitofrontal cortex, brainstem, and posterior cingulate cortex). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Metformina , Anciano , Anciano de 80 o más Años , Envejecimiento , Atrofia , Bancos de Muestras Biológicas , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Reino Unido
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34588302

RESUMEN

Brain aging is associated with hypometabolism and global changes in functional connectivity. Using functional MRI (fMRI), we show that network synchrony, a collective property of brain activity, decreases with age. Applying quantitative methods from statistical physics, we provide a generative (Ising) model for these changes as a function of the average communication strength between brain regions. We find that older brains are closer to a critical point of this communication strength, in which even small changes in metabolism lead to abrupt changes in network synchrony. Finally, by experimentally modulating metabolic activity in younger adults, we show how metabolism alone-independent of other changes associated with aging-can provide a plausible candidate mechanism for marked reorganization of brain network topology.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos
8.
Proc Natl Acad Sci U S A ; 117(11): 6170-6177, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32127481

RESUMEN

Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale (n = 292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester (d-ß-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Red Nerviosa/fisiología , Adaptación Fisiológica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Conjuntos de Datos como Asunto , Demencia/dietoterapia , Demencia/fisiopatología , Demencia/prevención & control , Dieta Cetogénica , Femenino , Glucosa/administración & dosificación , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Cetonas/administración & dosificación , Cetonas/metabolismo , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA