Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 54(44): 13027-31, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26346802

RESUMEN

Metal ion signaling in biology has been studied extensively with ortho-nitrobenzyl photocages; however, the low quantum yields and other optical properties are not ideal for these applications. We describe the synthesis and characterization of NTAdeCage, the first member in a new class of Zn(2+) photocages that utilizes a light-driven decarboxylation reaction in the metal ion release mechanism. NTAdeCage binds Zn(2+) with sub-pM affinity using a modified nitrilotriacetate chelator and exhibits an almost 6 order of magnitude decrease in metal binding affinity upon uncaging. In contrast to other metal ion photocages, NTAdeCage and the corresponding Zn(2+) complex undergo efficient photolysis with quantum yields approaching 30 %. The ability of NTAdeCage to mediate the uptake of (65) Zn(2+) by Xenopus laevis oocytes expressing hZIP4 demonstrates the viability of this photocaging strategy to execute biological assays.


Asunto(s)
Complejos de Coordinación/química , Homeostasis , Fármacos Fotosensibilizantes/química , Transducción de Señal , Zinc/química , Complejos de Coordinación/síntesis química , Descarboxilación , Iones/química , Fotólisis , Fármacos Fotosensibilizantes/síntesis química
2.
J Biol Chem ; 290(29): 17796-17805, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25971965

RESUMEN

Members of the Zrt and Irt protein (ZIP) family are a central participant in transition metal homeostasis as they function to increase the cytosolic concentration of zinc and/or iron. However, the lack of a crystal structure hinders elucidation of the molecular mechanism of ZIP proteins. Here, we employed GREMLIN, a co-evolution-based contact prediction approach in conjunction with the Rosetta structure prediction program to construct a structural model of the human (h) ZIP4 transporter. The predicted contact data are best fit by modeling hZIP4 as a dimer. Mutagenesis of residues that comprise a central putative hZIP4 transmembrane transition metal coordination site in the structural model alter the kinetics and specificity of hZIP4. Comparison of the hZIP4 dimer model to all known membrane protein structures identifies the 12-transmembrane monomeric Piriformospora indica phosphate transporter (PiPT), a member of the major facilitator superfamily (MFS), as a likely structural homolog.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Zinc/metabolismo , Animales , Cationes Bivalentes/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Humanos , Hierro/metabolismo , Modelos Moleculares , Multimerización de Proteína , Xenopus
3.
Metallomics ; 7(9): 1319-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25882556

RESUMEN

The human (h) ZIP4 transporter is a plasma membrane protein which functions to increase the cytosolic concentration of zinc. hZIP4 transports zinc into intestinal cells and therefore has a central role in the absorption of dietary zinc. hZIP4 has eight transmembrane domains and encodes a large intracellular loop between transmembrane domains III and IV, M3M4. Previously, it has been postulated that this domain regulates hZIP4 levels in the plasma membrane in a zinc-dependent manner. The objective of this research was to examine the zinc binding properties of the large intracellular loop of hZIP4. Therefore, we have recombinantly expressed and purified M3M4 and showed that this domain binds two zinc ions. Using a combination of site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy, we demonstrated that the two Zn(2+) ions bind sequentially, with the first Zn(2+) binding to a CysHis3 site with a nanomolar binding affinity, and the second Zn(2+) binding to a His4 site with a weaker affinity. Circular dichroism spectroscopy revealed that the M3M4 domain is intrinsically disordered, with only a small structural change induced upon Zn(2+) coordination. Our data supports a model in which the intracellular M3M4 domain senses high cytosolic Zn(2+) concentrations and regulates the plasma membrane levels of the hZIP4 transporter in response to Zn(2+) binding.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Zinc/química , Zinc/metabolismo , Cisteína/química , Cisteína/metabolismo , Histidina/química , Histidina/metabolismo , Humanos
4.
Biochemistry ; 51(5): 963-73, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242765

RESUMEN

Zinc is the second most abundant transition metal in the body. Despite the fact that hundreds of biomolecules require zinc for proper function and/or structure, the mechanism of zinc transport into cells is not well-understood. The ZIP (Zrt- and Irt-like proteins; SLC39A) family of proteins acts to increase cytosolic concentrations of zinc. Mutations in one member of the ZIP family of proteins, the human ZIP4 (hZIP4; SLC39A4) protein, can result in the disease acrodermatitis enteropathica (AE). AE is characterized by growth retardation and diarrhea, as well as behavioral and neurological disturbances. While the cellular distribution of hZIP4 protein expression has been elucidated, the cation specificity, kinetic parameters of zinc transport, and residues involved in cation translocation are unresolved questions. Therefore, we have established a high signal-to-noise zinc uptake assay following heterologous expression of hZIP4 in Xenopus laevis oocytes. The results from our experiments have demonstrated that zinc, copper(II), and nickel can be transported by hZIP4 when the cation concentration is in the micromolar range. We have also identified a nanomolar binding affinity where copper(II) and zinc can be transported. In contrast, under these conditions, nickel can bind but is not transported by hZIP4. Finally, labeling of hZIP4 with maleimide or diethylpyrocarbonate indicates that extracellularly accessible histidine, but not cysteine, residues are required, either directly or indirectly, for cation uptake. The results of our experiments identify at least two coordination sites for divalent cations and provide a new framework for investigating the ZIP family of proteins.


Asunto(s)
Proteínas de Transporte de Catión/química , Cobre/química , Níquel/química , Zinc/química , Secuencia de Aminoácidos , Transporte Biológico , Grupo Citocromo c/química , Citocromo-c Peroxidasa/química , Humanos , Proteínas de Unión a Maltosa/química , Datos de Secuencia Molecular , Oxidorreductasas/química , Unión Proteica , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Shewanella/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...