Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 42(5): 797-814.e15, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744246

RESUMEN

The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.


Asunto(s)
Colitis , Inhibidores de Puntos de Control Inmunológico , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/farmacología , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Interferón gamma/metabolismo , Femenino , Análisis de la Célula Individual , Ratones
3.
J Med Genet ; 61(4): 347-355, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37979963

RESUMEN

BACKGROUND: Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS: Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS: Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION: These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.


Asunto(s)
Amelogénesis Imperfecta , Colágenos no Fibrilares , Humanos , Colágenos no Fibrilares/genética , Colágenos no Fibrilares/metabolismo , Autoantígenos/genética , Amelogénesis Imperfecta/genética , Heterocigoto , Fenotipo , Mutación/genética
4.
Nat Commun ; 14(1): 7216, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940670

RESUMEN

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Linfocitos T CD8-positivos , Pulmón , Linfocitos T Citotóxicos
5.
Genome Med ; 15(1): 70, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705109

RESUMEN

BACKGROUND: T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8 + T-cell epitopes. METHODS: We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to 'dissimilarity to self' from cancer studies. RESULTS: TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP implementation is available at: https://github.com/ChloeHJ/TRAP . CONCLUSIONS: This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Epítopos de Linfocito T , Flujo de Trabajo , SARS-CoV-2 , Linfocitos T CD8-positivos
6.
Immunother Adv ; 3(1): ltad005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082106

RESUMEN

T cell recognition of SARS-CoV-2 antigens after vaccination and/or natural infection has played a central role in resolving SARS-CoV-2 infections and generating adaptive immune memory. However, the clinical impact of SARS-CoV-2-specific T cell responses is variable and the mechanisms underlying T cell interaction with target antigens are not fully understood. This is especially true given the virus' rapid evolution, which leads to new variants with immune escape capacity. In this study, we used the Omicron variant as a model organism and took a systems approach to evaluate the impact of mutations on CD8+ T cell immunogenicity. We computed an immunogenicity potential score for each SARS-CoV-2 peptide antigen from the ancestral strain and Omicron, capturing both antigen presentation and T cell recognition probabilities. By comparing ancestral vs. Omicron immunogenicity scores, we reveal a divergent and heterogeneous landscape of impact for CD8+ T cell recognition of mutated targets in Omicron variants. While T cell recognition of Omicron peptides is broadly preserved, we observed mutated peptides with deteriorated immunogenicity that may assist breakthrough infection in some individuals. We then combined our scoring scheme with an in silico mutagenesis, to characterise the position- and residue-specific theoretical mutational impact on immunogenicity. While we predict many escape trajectories from the theoretical landscape of substitutions, our study suggests that Omicron mutations in T cell epitopes did not develop under cell-mediated pressure. Our study provides a generalisable platform for fostering a deeper understanding of existing and novel variant impact on antigen-specific vaccine- and/or infection-induced T cell immunity.

7.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36413219

RESUMEN

Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.


Asunto(s)
Colitis Ulcerosa , Verrucomicrobia , Humanos , Ratones , Animales , Verrucomicrobia/metabolismo , Moco/metabolismo , Lectinas , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología
8.
Cell Stem Cell ; 29(9): 1292-1293, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055189

RESUMEN

A trio of studies in this issue of Cell Stem Cell catalogs the anatomical and functional relationship of intestinal lymphatics with epithelial stem cells, defining an important niche role for the lymphatic endothelium.


Asunto(s)
Células Endoteliales , Endotelio Linfático , Células Madre
9.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35471658

RESUMEN

T cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.


Asunto(s)
COVID-19 , Neoplasias , Linfocitos T CD8-positivos/metabolismo , Simulación por Computador , Epítopos de Linfocito T , Humanos , Péptidos
10.
Immunology ; 166(1): 78-103, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143694

RESUMEN

The conditions and extent of cross-protective immunity between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common-cold human coronaviruses (HCoVs) remain open despite several reports of pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure. Using a pool of functionally evaluated SARS-CoV-2 peptides, we report a map of 126 immunogenic peptides with high similarity to 285 MHC-presented peptides from at least one HCoV. Employing this map of SARS-CoV-2-non-homologous and homologous immunogenic peptides, we observe several immunogenic peptides with high similarity to human proteins, some of which have been reported to have elevated expression in severe COVID-19 patients. After combining our map with SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls, we show that public repertoires for the majority of convalescent patients are dominated by TCRs cognate to non-homologous SARS-CoV-2 peptides. We find that for a subset of patients, >50% of their public SARS-CoV-2-specific repertoires consist of TCRs cognate to homologous SARS-CoV-2-HCoV peptides. Further analysis suggests that this skewed distribution of TCRs cognate to homologous or non-homologous peptides in COVID-19 patients is likely to be HLA-dependent. Finally, we provide 10 SARS-CoV-2 peptides with known cognate TCRs that are conserved across multiple coronaviruses and are predicted to be recognized by a high proportion of the global population. These findings may have important implications for COVID-19 heterogeneity, vaccine-induced immune responses, and robustness of immunity to SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Reacciones Cruzadas , Epítopos de Linfocito T , Humanos , Péptidos , Receptores de Antígenos de Linfocitos T , Glicoproteína de la Espiga del Coronavirus
11.
Commun Biol ; 5(1): 111, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121793

RESUMEN

Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.


Asunto(s)
Reprogramación Celular/fisiología , Células Dendríticas/metabolismo , Salmonella enterica/clasificación , Células Dendríticas/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mutación
12.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021065

RESUMEN

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , Secuencia de Bases , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Metotrexato/farmacología , Mutación/genética , Fosforilación/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Piroptosis/efectos de los fármacos , Piroptosis/genética , Reproducibilidad de los Resultados , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
13.
STAR Protoc ; 2(4): 100890, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34746860

RESUMEN

The intestine has a large number of cell types. Thus, digestion of pure and viable populations is necessary for downstream techniques including single-cell RNA sequencing. We outline a protocol to isolate both epithelial and non-epithelial cells from human fetal samples at high viability, which was used to produce a full thickness atlas of intestinal cells across human development. This protocol can also be adapted to adult endoscopy and surgical specimens. For details on the use of this protocol, please refer to Fawkner-Corbett et al. (2021).


Asunto(s)
Feto/citología , Intestinos/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Células Cultivadas , Feto/metabolismo , Humanos , Intestinos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nat Immunol ; 22(8): 944-946, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34262171

Asunto(s)
Fibroblastos
15.
Gastroenterology ; 161(1): 239-254.e9, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33819486

RESUMEN

BACKGROUND & AIMS: In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS: A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS: In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS: BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Colitis/metabolismo , Colon/metabolismo , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Regeneración , Animales , Comunicación Autocrina , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular , Proliferación Celular , Colitis/genética , Colitis/patología , Colon/patología , Células Epiteliales/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mucosa Intestinal/patología , Intestino Delgado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología , Repitelización , Transducción de Señal
16.
Front Immunol ; 12: 623430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746960

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is the most severe form of chronic lung fibrosis. Circulating monocytes have been implicated in immune pathology in IPF but their phenotype is unknown. In this work, we determined the immune phenotype of monocytes in IPF using multi-colour flow cytometry, RNA sequencing and corresponding serum factors, and mapped the main findings to amount of lung fibrosis and single cell transcriptomic landscape of myeloid cells in IPF lungs. We show that monocytes from IPF patients displayed increased expression of CD64 (FcγR1) which correlated with amount of lung fibrosis, and an amplified type I IFN response ex vivo. These were accompanied by markedly raised CSF-1 levels, IL-6, and CCL-2 in serum of IPF patients. Interrogation of single cell transcriptomic data from human IPF lungs revealed increased proportion of CD64hi monocytes and "transitional macrophages" with higher expression of CCL-2 and type I IFN genes. Our study shows that monocytes in IPF patients are phenotypically distinct from age-matched controls, with a primed type I IFN pathway that may contribute to driving chronic inflammation and fibrosis. These findings strengthen the potential role of monocytes in the pathogenesis of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/inmunología , Interferón Tipo I/metabolismo , Pulmón/inmunología , Monocitos/inmunología , Estudios de Casos y Controles , Células Cultivadas , Quimiocina CCL2/sangre , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inmunofenotipificación , Interferón Tipo I/genética , Interleucina-6/sangre , Pulmón/metabolismo , Pulmón/patología , Factor Estimulante de Colonias de Macrófagos/sangre , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/metabolismo , Fenotipo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Análisis de la Célula Individual
17.
Ann Rheum Dis ; 80(7): 920-929, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33542104

RESUMEN

OBJECTIVES: Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS: RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS: RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS: Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.


Asunto(s)
Células Dendríticas/inmunología , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Esclerodermia Localizada/inmunología , Esclerodermia Localizada/patología , Animales , Células Dendríticas/patología , Modelos Animales de Enfermedad , Fibrosis , Xenoinjertos , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Esclerodermia Localizada/metabolismo , Piel/inmunología , Piel/metabolismo , Piel/patología
18.
J Immunol ; 206(4): 785-796, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33441439

RESUMEN

Human plasmacytoid dendritic cells (pDCs) play a vital role in modulating immune responses. They can produce massive amounts of type I IFNs in response to nucleic acids via TLRs, but they are also known to possess weak Ag-presenting properties inducing CD4+ T cell activation. Previous studies showed a cross-regulation between TNF-α and IFN-α, but many questions remain about the effect of TNF-α in regulating human pDCs. In this study, we showed that TNF-α significantly inhibited the secretion of IFN-α and TNF-α of TLR-stimulated pDCs. Instead, exogenous TNF-α promoted pDC maturation by upregulating costimulatory molecules and chemokine receptors such as CD80, CD86, HLA-DR, and CCR7. Additionally, RNA sequencing analysis showed that TNF-α inhibited IFN-α and TNF-α production by downregulating IRF7 and NF-κB pathways, while it promoted Ag processing and presentation pathways as well as T cell activation and differentiation. Indeed, TNF-α-treated pDCs induced in vitro higher CD4+ T cell proliferation and activation, enhancing the production of Th1 and Th17 cytokines. In conclusion, TNF-α favors pDC maturation by switching their main role as IFN-α-producing cells to a more conventional dendritic cell phenotype. The functional status of pDCs might therefore be strongly influenced by their overall inflammatory environment, and TNF-α might regulate IFN-α-mediated aspects of a range of autoimmune and inflammatory diseases.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Células Dendríticas/inmunología , Interferón-alfa/inmunología , Activación de Linfocitos , Factor de Necrosis Tumoral alfa/inmunología , Regulación de la Expresión Génica/inmunología , Humanos
19.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406409

RESUMEN

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Asunto(s)
Intestinos/citología , Intestinos/crecimiento & desarrollo , Análisis de la Célula Individual , Células Endoteliales/citología , Sistema Nervioso Entérico/citología , Feto/embriología , Fibroblastos/citología , Humanos , Inmunidad , Enfermedades Intestinales/congénito , Enfermedades Intestinales/patología , Mucosa Intestinal/crecimiento & desarrollo , Intestinos/irrigación sanguínea , Ligandos , Mesodermo/citología , Neovascularización Fisiológica , Pericitos/citología , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/metabolismo
20.
Nat Commun ; 11(1): 6149, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262343

RESUMEN

Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.


Asunto(s)
Autoinmunidad , Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Lupus Eritematoso Sistémico/inmunología , Citocinas/genética , Citocinas/inmunología , Humanos , Interferón Tipo I/genética , Lupus Eritematoso Sistémico/genética , Activación de Linfocitos , Linfocitos T/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...