Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(38): 26956-26959, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27711520

RESUMEN

The possibility of a FeS2 phase formation in the 2D MoS2 structure was investigated by an ab initio DFT approach. Various concentrations of FeS2 in MoS2 have been analyzed, and it is shown that the energy favorable structures of the Mo1-xFexS2 composition are in-plane hybrid phases, FeS2 and MoS2 domains. After increasing the Fe/Mo concentration ratio up to 0.68, a complete transformation of the whole structure is predicted. We have found that the introduction of only a small amount of Fe atoms leads to a change in the electronic and magnetic properties of the film. An increase of the FeS2 nucleus size leads to the nearly monotonous increase of the magnetic moment governed by the exponential law.

2.
Nanoscale ; 6(14): 8400-4, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24942092

RESUMEN

Theoretical analysis of experimental data on unzipping multilayered WS2 nanotubes by consequent intercalation of lithium atoms and 1-octanethiol molecules [C. Nethravathi, et al., ACS Nano, 2013, 7, 7311] is presented. The radial expansion of the tube was described using continuum thin-walled cylinder approximation with parameters evaluated from ab initio calculations. Assuming that the attractive driving force of the 1-octanethiol molecule is its reaction with the intercalated Li ions ab initio calculations of a 1-octanethiol molecule bonding with Li(+) were carried out. In addition, the non-chemical interactions of the 1-octanethiol dipole with an array of positive point charges representing Li(+) were taken into account. Comparing between the energy gain from these interactions and the elastic strain energy of the nanotube allows us to evaluate a value for the tube wall deformation after the implantation of 1-octanethiol molecules. The ab initio molecular dynamics simulation confirmed our estimates and demonstrated that a strained WS2 nanotube, with a decent concentration of 1-octanethiol molecules, should indeed be unzipped into the WS2 nanoribbon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA