Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 31(11): 1405-1420, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32323635

RESUMEN

The novelty of the work lies in the creation and study of the physical and biological properties of biodegradable polymer coatings for stents based on poly(lactic-co-glycolic acid) (PLGA). Polymer coatings are capable of prolonged and directed release of molecules with a high molecular weight, in particular, protein molecules of prourokinase (m.w. 54 kDa). A technology has been developed to create coatings having a relative elongation of 40% to 165% and a tensile strength of 25-65 MPa. Coatings are biodegradable; the rate of degradation of the polymer in an isotonic solution varies in the range of 0.05%-1.0% per day. The created coatings are capable of controlled release of the protein of prourokinase, while about 90% of the molecules of prourokinase retain their enzymatic activity. The rate of release of prourokinase can vary from 0.01 to 0.08 mg/day/cm2. Coatings do not have a short-term toxic effect on mammalian cells. The mitotic index of cells growing on coatings is approximately 1.5%. When implanting the developed polymers in animals in the postoperative period, there are no complications. Histological examination did not reveal pathological processes. When implanting individual polymers 60 days after surgery, only traces of PLGA are detected. Thus, a biodegradable composite mechanically resistant polymer capable of prolonged release of the high molecular weight prourokinase enzyme has been developed.


Asunto(s)
Polímeros , Stents , Animales
2.
PLoS One ; 10(5): e0126504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25978038

RESUMEN

Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hierro/metabolismo , ADN/metabolismo , Expresión Génica/fisiología , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Unión Proteica/fisiología
3.
J Bioinform Comput Biol ; 12(2): 1441006, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24712533

RESUMEN

Seventy-eight promoter islands with an extraordinarily high density of potential promoters have been recently found in the genome of Escherichia coli. It has been shown that RNA polymerase binds internal promoters of these islands and produces short oligonucleotides, while the synthesis of normal mRNAs is suppressed. This quenching may be biologically relevant, as most islands are associated with foreign genes, which expression may deplete cellular resources. However, a molecular mechanism of silencing with the participation of these promoter-rich regions remains obscure. It has been demonstrated that all islands interact with histone-like protein H-NS--a specific sentinel of foreign genes. In this study, we demonstrated the inhibitory effect of H-NS using Δhns mutant of Escherichia coli and showed that deletion of dps, encoding another protein of bacterial nucleoid, tended to decrease rather than increase the amount of island-specific transcripts. This observation precluded consideration of promoter islands as sites for targeted heterochromatization only and a computer search for the binding sites of 53 transcription factors (TFs) revealed six proteins, which may specifically regulate their transcriptional output.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Islas Genómicas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Secuencia de Bases , Sitios de Unión , Regulación Bacteriana de la Expresión Génica/genética , Datos de Secuencia Molecular , Unión Proteica , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...