Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2534, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953179

RESUMEN

Continents are unique to Earth and played a role in coevolution of the atmosphere, hydrosphere, and biosphere. Debate exists, however, regarding continent formation and the onset of subduction-driven plate tectonics. We present Ca isotope and trace-element data from modern and ancient (4.0 to 2.8 Ga) granitoids and phase equilibrium models indicating that Ca isotope fractionations are dominantly controlled by geothermal gradients. The results require gradients of 500-750 °C/GPa, as found in modern (hot) subduction-zones and consistent with the operation of subduction throughout the Archaean. Two granitoids from the Nuvvuagittuq Supracrustal Belt, Canada, however, cannot be explained through magmatic processes. Their isotopic signatures were likely inherited from carbonate sediments. These samples (> 3.8 Ga) predate the oldest known carbonates preserved in the rock record and confirm that carbonate precipitation in Eoarchaean oceans provided an important sink for atmospheric CO2. Our results suggest that subduction-driven plate tectonic processes started prior to ~3.8 Ga.

2.
Metallomics ; 12(10): 1585-1598, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33084720

RESUMEN

Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aß) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Metales/metabolismo , Envejecimiento , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Hierro/metabolismo , Isótopos/metabolismo , Porcinos , Porcinos Enanos
3.
Proc Natl Acad Sci U S A ; 116(41): 20315-20321, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548431

RESUMEN

Kinetic calcium isotope effects can be used as growth-rate proxies for volcanic and subvolcanic minerals. Here, we analyze Ca isotopic compositions in experimental and natural samples and confirm that large kinetic effects (>2‰) can occur during magmatic plagioclase crystallization. Experiments confirm theoretical predictions that disequilibrium isotope effects depend mainly on the rates for crystal growth relative to liquid phase Ca diffusivity (R/D). Plagioclase phenocrysts from the 1915 Mount Lassen rhyodacite eruption, the ∼650-y-old Deadman Creek Dome eruption, and several mafic subvolcanic orbicules and plagioclase comb layers from Northern California have disequilibrium Ca isotopic compositions that suggest rapid crystal growth rates (>1 cm/y to 15 cm/y). The Ca isotope results, combined with complementary crystal-size distribution analyses, suggest that magmatic rejuvenation (and eruption) events, as reflected in crystal growth times, can be as short as ∼10-3 y. Although mafic systems are predicted to have shorter magmatic rejuvenation periods, we find similarly short timescales in both mafic and silicic systems. These results are consistent with a growing body of evidence suggesting that dominantly crystalline volcanic magma reservoirs can be rapidly reactivated by the injection of fresh magma prior to eruption. By focusing on a common mineral such as plagioclase, this approach can be applied across all major magmatic compositions, suggesting that Ca isotopes can be used as a tool for investigating the dynamics and timing of volcanic eruptions.

4.
Proc Natl Acad Sci U S A ; 114(47): 12413-12418, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109295

RESUMEN

Variations in the Mg, Ca, Sr, and SO4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). We present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO4 in modern seawater. At other times during the last 500 million years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ∼0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ∼1.6 over the Phanerozoic, with minima when seawater Mg and SO4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/86Sr changes. For the mid-Cretaceous, the low 87Sr/86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. The model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO4 could help explain low seawater 87Sr/86Sr.

5.
Proc Natl Acad Sci U S A ; 111(50): 17749-54, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453079

RESUMEN

Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

6.
Nature ; 496(7446): 490-3, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23619695

RESUMEN

Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur--probably derived from hydrothermally altered oceanic crust--was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ(33)S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...