Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(5)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35625593

RESUMEN

A key event in the cytochrome c-dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome c, into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome c in a complex with cardiolipin. Using a number of mutant variants of cytochrome c, we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome c to bind to cardiolipin. At the same time, the peroxidase activity of all mutant variants in a complex with cardiolipin was three to five times higher than that of the wild type. A pronounced increase in the ability to permeabilize the lipid membrane in the presence of hydrogen peroxide, as measured by calcein leakage from liposomes, was observed only in the case of four substitutions in the red Ω-loop (M4 mutant). According to resonance and surface-enhanced Raman spectroscopy, the mutations caused significant changes in the heme of oxidized cytochrome c molecules resulting in an increased probability of the plane heme conformation and the enhancement of the rigidity of the protein surrounding the heme. The binding of wild-type and mutant forms of oxidized cytochrome c to cardiolipin-containing liposomes caused the disordering of the acyl lipid chains that was more pronounced for the M4 mutant. Our findings indicate that the Ω-loop is important for the pore formation in cardiolipin-containing membranes.


Asunto(s)
Cardiolipinas , Citocromos c , Antioxidantes , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Hemo , Liposomas/metabolismo , Mutación , Peroxidasas/genética
2.
Pharm Res ; 28(11): 2883-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21671134

RESUMEN

PURPOSE: To develop effective mitochondria-targeted antioxidants composed entirely of natural constituents. METHODS: Novel mitochondria-targeted antioxidants were synthesized containing plant electron carrier and antioxidant plastoquinone conjugated by nonyloxycarbonylmethyl residue with berberine or palmatine, penetrating cations of plant origin. These compounds, SkQBerb and SkQPalm, were tested in model planar phospholipid membranes and micelles, liposomes, isolated mitochondria and living cells. RESULTS: SkQBerb and SkQPalm penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in mitochondria isolated or in living human cells in culture. Reduced forms of SkQBerb and SkQPalm as well as C10Berb and C10Palm (SkQBerb and SkQPalm analogs lacking plastoquinol moiety) revealed radical scavenging activity in lipid micelles and liposomes, while oxidized forms were inactive. In isolated mitochondria and in living cells, berberine and palmatine moieties were not reduced, so antioxidant activity of C10Berb and C10Palm was not detected. SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations; their prooxidant effect was observed at 1,000 times higher concentrations. In human cell cuture, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. CONCLUSION: This is the first successful attempt to construct mitochondria-targeted antioxidants composed entirely of natural components, namely plastoquinone, nonyl, acetyl and berberine or palmatine residues.


Asunto(s)
Antioxidantes/química , Alcaloides de Berberina/química , Berberina/química , Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Preparaciones de Plantas/síntesis química , Plastoquinona/síntesis química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Berberina/metabolismo , Berberina/farmacología , Alcaloides de Berberina/metabolismo , Alcaloides de Berberina/farmacología , Composición de Medicamentos , Fibroblastos , Células HeLa , Humanos , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Químicos , Fitoterapia , Preparaciones de Plantas/química , Preparaciones de Plantas/metabolismo , Preparaciones de Plantas/farmacología , Plastoquinona/análogos & derivados , Plastoquinona/química , Plastoquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...