Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 945409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148245

RESUMEN

Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.


Asunto(s)
Linfopenia , Sepsis , Animales , Antígenos , Médula Ósea , Linfocitos T CD8-positivos , Diferenciación Celular , Citocinas , Células Dendríticas , Humanos , Interferón gamma , Interleucina-12 , Ratones , Receptor Toll-Like 2
2.
Immunohorizons ; 5(5): 298-306, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980662

RESUMEN

Acute major tissue injury induces immune dysregulation that is characterized by the development of systemic sterile inflammation and an increased risk for opportunistic infections. Although the contribution of the innate immune system has been examined in detail, research on the impact of acute sterile tissue damage on the T cell compartment remains limited. In the current study, we used a clinically relevant mouse model for traumatic skeletal muscle injury to investigate the impact of sterile tissue damage on diverse subpopulations of CD4+ Th and CD8+ cytotoxic T cells in systemic and local lymphoid organs. For the first time, to our knowledge, we provide evidence that injury selectively induced the expression of the activation marker CD69 on naive and central/virtual memory CD8+ T cells in the lymph nodes but not in the spleen of male mice. CD4+ Th cells remained unaffected in both organs. The activation of CD8+ T cells was dependent on signaling through TLR4. Within a few hours, injury triggered the expression of IL-12 in the lymph nodes in a TLR4-dependent manner. Blocking of IL-12 prevented the activation of naive and central memory CD8+ T cells after injury. Thus, early after traumatic tissue damage, TLR4 transactivates naive and central/virtual memory CD8+ T cells through innate cytokines in local lymph nodes, where they might modulate forthcoming local immune responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Músculo Esquelético/lesiones , Receptor Toll-Like 4/genética , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Ganglios Linfáticos/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Bazo/citología
3.
J Immunol ; 205(1): 56-66, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32444390

RESUMEN

Although substantial progress has been achieved concerning neonatal sepsis, its lethality remains considerably high, and further insights into peculiarities and malfunctions of neonatal immunity are needed. This study aims to contribute to a better understanding of the role of human neonatal granulocyte subpopulations and calgranulin C (S100A12). For this purpose, we gathered 136 human cord blood (CB) samples. CD66b+ CB low-density granulocytes (LDG) and CB normal-density granulocytes were isolated and functionally and phenotypically compared with healthy adult control granulocytes. We could identify CB-LDG as CD66bbright CD64high CD16low CD35low CD10low S100A12med-low and, based on these markers, recovered in whole CB stainings. Consistent with flow cytometric findings, microscopic imaging supported an immature phenotype of CB-LDG with decreased S100A12 expression. In CB serum of healthy neonates, S100A12 was found to be higher in female newborns when compared with males. Additionally, S100A12 levels correlated positively with gestational age independently from sex. We could solidify functional deficits of CB-LDG concerning phagocytosis and generation of neutrophil extracellular traps. Our study reveals that previously described suppressive effects of CB-LDG on CD4+ T cell proliferation are exclusively due to phagocytosis of stimulation beads used in cocultures and absent when using soluble or coated Abs. In conclusion, we characterize CB-LDG as immature neutrophils with functional deficits and decreased expression and storage of S100A12. Concerning their cross-talk with the adaptive immunity, we found no direct inhibitory effect of LDG. Neonatal LDG may thus represent a distinct population that differs from LDG populations found in adults.


Asunto(s)
Diferenciación Celular/inmunología , Sangre Fetal/citología , Granulocitos/inmunología , Sepsis Neonatal/inmunología , Proteína S100A12/metabolismo , Inmunidad Adaptativa , Adulto , Antígenos CD/análisis , Antígenos CD/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/inmunología , Moléculas de Adhesión Celular/análisis , Moléculas de Adhesión Celular/metabolismo , Comunicación Celular/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Sangre Fetal/inmunología , Citometría de Flujo , Proteínas Ligadas a GPI/análisis , Proteínas Ligadas a GPI/metabolismo , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Inmunidad Innata , Recién Nacido , Recuento de Leucocitos , Masculino , Sepsis Neonatal/sangre , Cultivo Primario de Células , Proteína S100A12/análisis , Factores Sexuales
4.
Front Immunol ; 8: 1622, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29218051

RESUMEN

Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II- to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...