Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 276: 126263, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788378

RESUMEN

Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.


Asunto(s)
Cobalto , Descubrimiento de Drogas , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Cobalto/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/enzimología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Análisis Costo-Beneficio , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estabilidad de Enzimas
2.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38397745

RESUMEN

Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.

3.
Sci Total Environ ; 917: 170437, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38290670

RESUMEN

The constant exposure of humans to a mixture of low doses of toxic substances, emerging from the daily emission of toxic dust containing various metals and organic compounds in electrical and electronic waste (e-waste) recycling areas, poses potential harmful effects on health and the environment. While individually recognized as endocrine disruptors affecting hormonal balance, the combined impact of these toxic substances in a mixture remains insufficiently explored, particularly in relation to reproductive health. Thus, the aim of this in silico analysis was to: (i) assess the relationship between the exposure to a mixture of DBDE, DBDPE, TBBPA, Pb, Cd and Ni and development of male and female reproductive system disorders; and (ii) demonstrate the ability of in silico toxicogenomic tools in revealing the potential molecular mechanisms involved in the mixture toxicity. As the main data-mining tool, Comparative Toxicogenomics Database (CTD) was used, along with the ToppGene Suite portal and GeneMANIA online server. Our analysis identified 5 genes common to all the investigated substances and linked to reproductive system disorders. Notably, the most prominent interactions among these genes were physical interactions (77.64 %). Pathway enrichment analysis identified oxidative stress response as the central disrupted molecular pathway linked to reproductive pathology in the investigated mixture, while our chemical-phenotype CTD analysis uncovered additional affected pathways - apoptosis, hormonal regulation, and developmental functions. These findings highlight an increased risk of reproductive system disorders associated with the exposure to the investigated mixture of toxic substances in electronic waste recycling areas, emphasizing the urgent need for attention to address this environmental health concern. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.


Asunto(s)
Residuos Electrónicos , Disruptores Endocrinos , Masculino , Femenino , Humanos , Polvo/análisis , Residuos Electrónicos/análisis , Disruptores Endocrinos/toxicidad , Metales , Reciclaje
4.
Environ Res ; 238(Pt 2): 117274, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797666

RESUMEN

Toxicological research is mostly limited to considering the effects of a single substance, even though the real exposure of people is reflected in their daily exposure to many different chemical substances in low-doses. This in silico toxicogenomic study aims to provide evidence for the selected environmental (organo)metals (lead, cadmium, methyl mercury) + polychlorinated biphenyls mixture involvement in the possible alteration of thyroid, and male reproductive system function, and furthermore to predict the possible toxic mechanisms of the environmental cocktail. The Comparative Toxicogenomic Database, GeneMANIA online software, and ToppGene Suite portal were used as the main tools for toxicogenomic data mining and gene ontology analysis. The results show that 35 annotated common genes between selected chemicals and endocrine system diseases can interact on the co-expression level. Our study highlighted the disruption of the cytokines, the cell's response to oxidative stress, and the influence of the transcription factors as the potential core of toxicological mechanisms of the discussed mixture's effects. The connected toxicological effects of the tested mixture were abnormal sperm cells, a disrupted level of testosterone, and thyroid hormones. The core mechanisms of these effects were inflammation, oxidative stress, disruption of androgen receptor signaling, and the alteration of the FOXO3-Keap-1/NRF2-HMOX1-NQO1 pathway signaling most likely controlled by the co-expression of overlapped genes among used chemicals. This in silico research can be used as a potential core for the determination of biomarkers that can be monitored in future further in vitro and in vivo experiments.


Asunto(s)
Bifenilos Policlorados , Humanos , Masculino , Bifenilos Policlorados/toxicidad , Glándula Tiroides , Toxicogenética , Semen , Hormonas Tiroideas
5.
Sci Total Environ ; 895: 165181, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385496

RESUMEN

The current study aimed to examine the effect of toxic metal(oid) mixtures (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), and nickel (Ni)) on female reproductive function in Wistar rats after the 28- and 90-day exposure to dose levels calculated on the basis of the previously conducted human study. Experimental groups included: 2 controls (28- and 90-day), treated groups - doses based on: median- F2 (28) and F2(90) and 95th percentile concentrations in the general human population - F3(28) and F3(90); calculated lower Benchmark dose confidence limit (BMDL) for effects on hormone levels - F1(28) and F1(90) and a group given the doses calculated on the basis of the reference values from the literature (F4(28)). Blood and ovarian samples were collected for sex hormones and ovary redox status analysis. After 28-day exposure, changes were present both in prooxidants and antioxidants. However, after the 90-day exposure redox status imbalance was majorly caused by the disturbance of antioxidants. Changes in some parameters were observed even after exposure to the lowest doses. After 28-day exposure, the strongest dose-response relationship was found between hormones: LH and FSH and toxic metal(oid)s and, after 90-day exposure, between investigated redox status parameters: sulfhydryl groups, ischemia-modified albumin and nuclear factor erythroid 2-related factor 2 (Nrf2) and toxic metal(oid)s. Low obtained BMDLs and narrow Benchmark intervals for toxic metal(oid)s and some of the parameters might confirm the "no-threshold" paradigm. This study indicates possible detrimental effects of prolonged exposure to real-life mixtures of toxic metal(oid) on female reproductive function.


Asunto(s)
Arsénico , Mercurio , Ratas , Animales , Humanos , Femenino , Cadmio/toxicidad , Antioxidantes , Biomarcadores , Ratas Wistar , Albúmina Sérica , Metales/toxicidad , Mercurio/toxicidad , Arsénico/toxicidad
6.
Environ Res ; 227: 115818, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004859

RESUMEN

Toxic metals (cadmium (Cd), lead (Pb), mercury (Hg) and arsenic (As)) and plastificators (bis (2 - ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP)) and bisphenol A (BPA)) have been suggested to aid in colorectal carcinoma (CRC) advancement. Sulforaphane (SFN), isothiocyanate from cruciferous vegetables, diminishes chemical carcinogenesis susceptibility, but has been shown to act as a friend or a foe depending on various factors. By conducting the mechanistic toxicogenomic data mining approach, this research aimed to determine if SFN can alleviate toxic-metal and/or phthalate/BPA mixture-induced CRC at the gene level. Comparative Toxicogenomics Database, ToppGene Suite portal, Cytoscape software, InteractiVenn and Gene Expression Omnibus (GEO) database (GEO2R tool) was used. Among the mutual genes for all the investigated substances, SFN had a protective impact only through PTGS2. Other proposed protective SFN-targets included ABCA1, ALDH2, BMP2, DPYD, MYC, SLCO2A1, and SOD2, only in the case of phthalates/BPA exposure. The only additional gene relevant for SFN protection against the toxic metal mixture-induced CRC was ABCB1. Additionally, the majority of the top 15 molecular pathways extracted for SFN impact on phthalate and BPA mixture-linked CRC development were directly linked with cancer development, which was not the case with the toxic metal mixture. The current research has indicated that SFN is a more effective chemoprotective agent against CRC induced by phthalates/BPA mixture than by toxic-metal mixture. It has also presented the value of computational methods as a simple tool for directing further research, selecting appropriate biomarkers and exploring the mechanisms of toxicity.


Asunto(s)
Neoplasias Colorrectales , Mercurio , Transportadores de Anión Orgánico , Ácidos Ftálicos , Humanos , Salud Pública , Toxicogenética , Ácidos Ftálicos/toxicidad , Isotiocianatos/toxicidad , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Compuestos de Bencidrilo/toxicidad , Aldehído Deshidrogenasa Mitocondrial
7.
Toxicology ; 489: 153496, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933645

RESUMEN

The current study aimed to assess the connection between the mixture of lead (Pb), cadmium (Cd), arsenic (As), methylmercury (MeHg) and decabrominated diphenyl ether (decaBDE) and thyroid function, by using in silico toxicogenomic data-mining approach. To obtain the linkage between investigated toxic mixture and thyroid diseases (TDs), the Comparative Toxicogenomics Database (CTD) was used, while gene ontology (GO) enrichment analysis was performed by ToppGeneSuite portal. The analysis has shown 10 genes connected to all chemicals present in the mixture and TDs (CAT, GSR, IFNG, IL1B, IL4, IL6, MAPK1, SOD2, TGFB1, TNF), most of which were in co-expression (45.68%), or belonged to the same pathway (30.47%). Top 5 biological processes and molecular functions affected by the investigated mixture emphasized the role of two common mechanisms - oxidative stress and inflammation. Cytokines and inflammatory response was listed as the main molecular pathway that may be triggered by simultaneous exposure to toxic metal(oid)s and decaBDE and connected to TDs. The direct relations between Pb/decaBDE and redox status impairment in thyroid tissue was confirmed by our chemical-phenotype interaction analysis, while the strongest linkage between Pb, As and decaBDE and thyroid disorders was found. The obtained results provide better understanding of molecular mechanisms involved in the thyrotoxicity of the investigated mixture, and can be used to direct further research.


Asunto(s)
Arsénico , Enfermedades de la Tiroides , Humanos , Plomo , Cadmio/toxicidad , Arsénico/toxicidad , Enfermedades de la Tiroides/inducido químicamente , Enfermedades de la Tiroides/genética , Éteres Fenílicos
8.
Toxics ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36977021

RESUMEN

Recent data indicate that lead (Pb) can induce adverse effects even at low exposure levels. Moreover, the corresponding mechanisms of low Pb toxicity have not been well identified. In the liver and the kidneys, Pb was found to induce various toxic mechanisms leading to organ physiological disruption. Therefore, the purpose of the study was to simulate low-dose Pb exposure in an animal model with the aim of assessing oxidative status and essential element levels as the main mechanism of Pb toxicity in the liver and kidneys. Furthermore, dose-response modelling was performed in order to determine the benchmark dose (BMD). Forty-two male Wistar rats were divided into seven groups: one control group, and six groups treated for 28 days with 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg b.w./day, respectively. Oxidative status parameters (superoxide dismutase activity (SOD), superoxide anion radical (O2-), malondialdehyde (MDA), total sulfhydryl groups (SHG), and advanced oxidation protein products (AOPP)) and Pb, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels were measured. Lowering Cu levels (BMD: 2.7 ng/kg b.w./day), raising AOPP levels (BMD: 0.25 µg/kg b.w./day) in the liver, and inhibiting SOD (BMD: 1.3 ng/kg b.w./day) in the kidneys appear to be the main mechanisms of Pb toxicity. The lowest BMD was derived for a decrease in Cu levels in liver, indicating that this effect is the most sensitive.

9.
J Hazard Mater ; 445: 130404, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36455319

RESUMEN

Connections between the mixture containing bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) and liver injury were explored through in silico investigation and 2 in vivo models. Comparative Toxicogenomics Database (CTD), ShinyGO, ToppCluster and Cytoscape were used for bioinformatic analysis. In vivo subacute study was performed on rats - five groups (n = 6): (1) Control: corn oil, (2) DEHP: 50 mg/kg b.w./day, (3) DBP: 50 mg/kg b.w./day, (4) BPA: 25 mg/kg b.w./day, (5) MIX: DEHP + DBP + BPA. Zebrafish embryos were exposed to the investigated substances in different doses, singularly and combined (binary and ternary mixtures). Liver injury was linked to 75 DEHP, DBP, and BPA genes, mostly connected to inflammation/oxidative stress. In rats, significant alterations in redox status/bioelements and pathohistology were most notable or exclusively present in MIX (probable additive effects). BPA decreased liver area (LA) index in dose-dependent manner. DEHP (< 2 µg/mL) and DBP (≤ 5 µg/mL) reduced LA values, while their higher doses increased LA index. The effect of DBP in binary mixtures led to a lethal outcome at the two highest concentrations, while the hepatotoxicity of DEHP/DBP/BPA mixture was dictated by BPA (confirmed by the benchmark dose analysis).


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Dietilhexil Ftalato , Ácidos Ftálicos , Ratas , Animales , Dietilhexil Ftalato/toxicidad , Pez Cebra , Ácidos Ftálicos/toxicidad , Dibutil Ftalato/toxicidad , Compuestos de Bencidrilo/toxicidad
10.
Environ Res ; 217: 114829, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410460

RESUMEN

The present study investigated the effects of PCBs on the rat kidneys with attention given to the determination critical effect dose (CED) using the Benchmark dose (BMD) approach. Male albino Wistar rats (7 animals per group) were given by oral gavage Aroclor 1254 dissolved in corn oil at doses of 0.0, 0.5, 1, 2, 4, 8, or 16 mg/kg b.w./day for 28 days. The PCB nephrotoxicity was manifested by a dose-dependent changes in serum urea levels. The study has also revealed PCB-induced oxidative stress induction in kidneys. The observed nephrotoxic effects can be partly explained by oxidative damage of lipids and proteins in the kidneys due to observed reduced CuZnSOD activity and disturbances in antioxidant protection. Аll the renal oxidative stress parameters showed dependence on PCB oral doses as well as internal, measure kidney PCB levels. Calculated BMDL values were lower than estimated no observed adverse effect levels (NOAEL) based on the study, suggesting the importance of BMD approach use in future risk assessment.


Asunto(s)
Bifenilos Policlorados , Ratas , Animales , Masculino , Bifenilos Policlorados/toxicidad , Ratas Sprague-Dawley , Ratas Wistar , Riñón , Modelos Animales
11.
Arh Hig Rada Toksikol ; 73(3): 207-222, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226821

RESUMEN

This study aimed to investigate the effect of 150 mg/L sodium fluoride (NaF) on redox status parameters and essential metals [copper (Cu), iron (Fe), and zinc (Zn)] in the blood, liver, kidney, brain, and spleen of Wistar rats and to determine the protective potential of selenium (Se) against fluoride (F-) toxicity. Male Wistar rats were randomly distributed in groups of five (n=5) receiving tap water (control) or water with NaF 150 mg/L, NaF 150 mg/L + Se 1.5 mg/L, and Se 1.5 mg/L solutions ad libitum for 28 days. Fluorides caused an imbalance in the redox and biometal (Cu, Fe, and Zn) status, leading to high superoxide anion (O2 .-) and malondialdehyde (MDA) levels in the blood and brain and a drop in superoxide dismutase (SOD1) activity in the liver and its increase in the brain and kidneys. Se given with NaF improved MDA, SOD1, and O2 .- in the blood, brain, and kidneys, while alone it decreased SH group levels in the liver and kidney. Biometals both reduced and increased F- toxicity. Further research is needed before Se should be considered as a promising strategy for mitigating F- toxicity.


Asunto(s)
Selenio , Oligoelementos , Animales , Cobre , Fluoruros/farmacología , Hierro , Masculino , Malondialdehído/farmacología , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar , Fluoruro de Sodio/toxicidad , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología , Superóxido Dismutasa-1/farmacología , Superóxidos/farmacología , Agua , Zinc
12.
Environ Pollut ; 314: 120321, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191801

RESUMEN

Excessive fluoride (F-) levels in the environment could induce different pathological changes, including comorbidities in reproductive functions. Hence, the aim of the present in vivo study was to explore F- subacute toxicity mechanisms via Benchmark dose (BMD) methodology on rat's testicles. The experiment was conducted on thirty male Wistar rats for 28 days, divided into six groups (n = 5): 1) Control (tap water); 2) 10 mg/L F-; 3) 25 mg/L F-; 4) 50 mg/L F-; 5) 100 mg/L F-; 6) 150 mg/L F-. Testicles were dissected out and processed for the determination of F- tissue concentrations, redox status parameters, essential elements level, and DNA damage. PROASTweb 70.1 software was used for determination of external and internal dose-response relationship. The results confirmed a significant increase in superoxide anion (O2.-), total oxidative status (TOS), copper (Cu), zinc (Zn), iron (Fe), DNA damage levels, and decrease in superoxide dismutase activity (SOD1) and total thiol (SH) groups. The dose-dependent changes were confirmed for SOD1 activity and DNA damage. The most sensitive parameters were SOD1 activity and DNA damage with the lowest BMDLs 0.1 µg F-/kg b. w. Since human and animal populations are daily and frequently unconsciously exposed to F-, this dose-response study is valuable for further research regarding the F- health risk assessment.


Asunto(s)
Fluoruros , Testículo , Animales , Masculino , Ratas , Cobre/análisis , Daño del ADN , Fluoruros/toxicidad , Hierro/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Compuestos de Sulfhidrilo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxidos , Testículo/efectos de los fármacos , Zinc/análisis
13.
Environ Int ; 165: 107313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635964

RESUMEN

The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.


Asunto(s)
Mercurio , Metaloides , Benchmarking , Cadmio , Humanos , Hormona Luteinizante , Masculino , Testosterona
14.
Food Chem Toxicol ; 158: 112671, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34793900

RESUMEN

The aim of this study was to explore the mechanisms of bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) mixture-induced asthma development and test probiotic as a potential positive intervention. Comparative Toxicogenomics Database (CTD) and ToppGene Suite were used as the main tools for in silico analysis. In vivo 28-day experiment was conducted on rats - seven groups (n = 6): (1) Control: corn oil, (2) P: probiotic (8.78 * 108 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day; (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs, thymus and kidneys were extracted and prepared for redox status and essential metals analysis. By conducting additional in vitro experiment, probiotic phthalate and BPA binding ability was explored. There were 24 DEHP, DBP and BPA asthma-related genes, indicating the three most probable mechanisms - apoptosis, inflammation and oxidative stress. In vivo experiment confirmed that significant changes in redox status/essential metal parameters were either prominent, or only present in the MIX group, indicating possible additive effects. In vitro experiment confirmed the ability of the multy-strain probiotic to bind DEHP/DBP/BPA mixture, while probiotic administration ameliorated mixture-induced changes in rat tissue.


Asunto(s)
Asma/inducido químicamente , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Ácidos Ftálicos/toxicidad , Probióticos/farmacología , Animales , Simulación por Computador , Humanos , Riñón/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Timo/efectos de los fármacos , Toxicogenética
15.
Environ Res ; 194: 110727, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33465344

RESUMEN

This in silico toxicogenomic analysis aims to: (i) testify the hypothesis about the influence of the environmentally relevant toxic metals (lead, methylmercury (organic form of mercury), cadmium and arsenic) on molecular mechanisms involved in amyotrophic lateral sclerosis (ALS), Parkinson's Disease (PD) and Alzheimer's disease (AD) development; and (ii) demonstrate the capability of in silico toxicogenomic data-mining for distinguishing the probable mechanisms of mixture-induced toxic effects. The Comparative Toxicogenomics Database (CTD; http://ctd. mdibl.org) and Cytoscape software were used as the main data-mining tools in this analysis. The results have shown that there were 7, 13 and 14 common genes for all the metals present in the mixture for each of the selected neurodegenerative disease (ND), respectively: ALS, PD and AD. Physical interactions (68.18%) were the most prominent interactions between the genes extracted for ALS, co-expression (60.85%) for PD and interactions predicted by the server (44.30%) for AD. SOD2 gene was noted as the mutual gene for all the selected ND. Oxidative stress, folate metabolism, vitamin B12, AGE-RAGE, apoptosis were noted as the key disrupted molecular pathways that contribute to the neurodegenerative disease's development. Gene ontology analysis revealed biological processes affected by the investigated mixture (glutathione metabolic process was listed as the most important for ALS, cellular response to toxic substance for PD, and neuron death for AD). Our results emphasize the role of oxidative stress, particularly SOD2, in neurodegeneration triggered by environmental toxic metal mixture and give a new insight into common molecular mechanisms involved in ALS, PD and AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Simulación por Computador , Minería de Datos , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/genética , Toxicogenética
16.
Chemosphere ; 267: 129296, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33348264

RESUMEN

The aim of this study was to: (i) determine and compare the capacity of bis (2 -ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), bisphenol A (BPA), and their mixture to produce testicular toxicity after the subacute exposure; (ii) explore the mechanisms behind the observed changes using in silico toxicogenomic approach. Male rats were randomly split into groups (n = 6): (1) Control (corn oil); (2) DEHP (50 mg/kg b.w./day); (3) DBP (50 mg/kg b.w./day); (4) BPA (25 mg/kg b.w./day); and (5) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA). Animals were sacrificed after 28 days of oral exposure, testes were extracted and prepared for histological assessments under the light microscope (haematoxylin and eosin staining) and redox status analysis. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite (https://toppgene.cchmc.org) were used for data-mining. Present pathohistological study has demonstrated more pronounced testicular toxicity of the MIX group (desquamated germinal epithelium cells, enlarged cells with hyperchromatic nuclei, multinucleated cell forms and intracytoplasmic vacuoles) in comparison with the single substances, while effects on redox status parameters were either more prominent, or present only in the MIX group. In silico investigation revealed 20 genes linked to male reproductive disorders, affected by all three investigated substances. Effects on metabolism, AhR pathway, apoptosis and oxidative stress could be singled out as the most probable mechanisms involved in the subacute DEHP, DBP and BPA mixture testicular toxicity, while the effect on oxidative stress parameters was confirmed by in vivo experiment.


Asunto(s)
Dietilhexil Ftalato , Testículo , Animales , Compuestos de Bencidrilo , Simulación por Computador , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/toxicidad , Masculino , Oxidación-Reducción , Fenoles , Ácidos Ftálicos , Ratas , Testículo/metabolismo , Toxicogenética
17.
Chemosphere ; 266: 128978, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33298328

RESUMEN

The aims of this study were to: (i) examine the toxic effects of sodium fluoride (NaF) in blood, liver, spleen, and brain cells of Wistar rats after the subacute exposure; (ii) explore the potential protective properties of selenium (Se) against fluoride toxicity after the simultaneous administration. Twenty male Wistar rats, eight weeks old, weighing approximately 140-190 g, were divided into four experimental groups (n = 5) as follows: I control-tap water; II NaF 150 ppm; III NaF 150 ppm and Se 1.5 mg/L; IV Se 1.5 mg/L, and had available water with solutions ad libitum for 28 days. DNA damage detected by comet assay was confirmed in the liver, spleen, and brain cells, but not in blood. Selenium supplementation together with NaF decreased DNA damage in liver and spleen cells. According to the histological findings, no changes were observed in spleen and brain tissues after NaF administration. Unlike the observed Se protective effect on the DNA level, no significant reduction of liver tissue injury was observed after the NaF and Se treatment, resulting in mild inflammation. Data of this study suggest that DNA damage after NaF subacute exposure at moderately high concentration was reduced in liver and spleen cells due to Se supplementation, but a similar change was not seen in the brain.


Asunto(s)
Fluoruros , Selenio , Animales , Daño del ADN , Masculino , Ratas , Ratas Wistar , Selenio/farmacología , Fluoruro de Sodio/toxicidad
18.
Chem Biol Interact ; 333: 109312, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33166511

RESUMEN

Chlorpyrifos is a extensively used organophosphate pesticide (OP). In this study, we closely looked into neurotoxicity of CPF and effect of vitamin B1, by checking the levels of cholinesterases, determining the activity of parameters of oxidative stress, inflammation and also level of apoptotic regulator. The study was performed on a total of 80 male Japanese quails (Coturnix japonica), (two control and 6 experimental groups, n = 10). Three group of quails were given by gavage chlorpyrifos (CPF) for 7 consecutive days at doses of 1.50 mg/kg b.w., 3.00 mg/kg b.w., and 6.00 mg/kg b.w. Another three groups were treated with 10 mg/kg b.w. of vitamin B1 i.m. 30 min after CPF application (in above mentioned doses). Our study have proved that all doses of CPF significantly inhibited cholinesterases in brain, while vitamin B1 reactivated them. CPF has led to an increase in the concentration of malondialdehyde (MDA), and activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), while tiamin changed the activity of antioxidant enzymes: CAT, SOD, GST. CPF stimulated apoptosis by decreasing B-cell lymphoma (Bcl-2) in brain, while application of vitamin B1 caused an increase of this parameter. CPF amplified inflammatory effect by elevating levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Thiamine proved its anti-inflammatory property by decreasing the expression of iNOS and interleukin-1(IL-1) and interleukin-6(IL-6). This study is highly pertinent because there is little defense currently available to humans and animals to prevent toxic effects of pesticides.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/enzimología , Cloropirifos/toxicidad , Colinesterasas/metabolismo , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tiamina/farmacología , Animales , Encéfalo/efectos de los fármacos , Coturnix , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Masculino , Malondialdehído/metabolismo , Tiamina/administración & dosificación
19.
Toxicol Appl Pharmacol ; 406: 115237, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920000

RESUMEN

Improvement of COVID-19 clinical condition was seen in studies where combination of antiretroviral drugs, lopinavir and ritonavir, as well as immunomodulant antimalaric, chloroquine/hydroxychloroquine together with the macrolide-type antibiotic, azithromycin, was used for patient's treatment. Although these drugs are "old", their pharmacological and toxicological profile in SARS-CoV-2 - infected patients are still unknown. Thus, by using in silico toxicogenomic data-mining approach, we aimed to assess both risks and benefits of the COVID-19 treatment with the most promising candidate drugs combinations: lopinavir/ritonavir and chloroquine/hydroxychloroquine + azithromycin. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite portal (https://toppgene.cchmc.org) served as a foundation in our research. Our results have demonstrated that lopinavir/ritonavir increased the expression of the genes involved in immune response and lipid metabolism (IL6, ICAM1, CCL2, TNF, APOA1, etc.). Chloroquine/hydroxychloroquine + azithromycin interacted with 6 genes (CCL2, CTSB, CXCL8, IL1B, IL6 and TNF), whereas chloroquine and azithromycin affected two additional genes (BCL2L1 and CYP3A4), which might be a reason behind a greater number of consequential diseases. In contrast to lopinavir/ritonavir, chloroquine/hydroxychloroquine + azithromycin downregulated the expression of TNF and IL6. As expected, inflammation, cardiotoxicity, and dyslipidaemias were revealed as the main risks of lopinavir/ritonavir treatment, while chloroquine/hydroxychloroquine + azithromycin therapy was additionally linked to gastrointestinal and skin diseases. According to our results, these drug combinations should be administrated with caution to patients suffering from cardiovascular problems, autoimmune diseases, or acquired and hereditary lipid disorders.


Asunto(s)
Betacoronavirus , Simulación por Computador , Minería de Datos/métodos , Toxicogenética/métodos , Antivirales/administración & dosificación , Antivirales/efectos adversos , Azitromicina/administración & dosificación , Azitromicina/efectos adversos , COVID-19 , Cloroquina/administración & dosificación , Cloroquina/efectos adversos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Bases de Datos Genéticas , Quimioterapia Combinada , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/efectos adversos , Lopinavir/administración & dosificación , Lopinavir/efectos adversos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , Ritonavir/administración & dosificación , Ritonavir/efectos adversos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
20.
Food Chem Toxicol ; 143: 111540, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32645469

RESUMEN

Phthalates and bisphenol A, to which people are mainly exposed through food, interfere with the body's endocrine system, along with various other toxic effects. Literature data suggest that probiotic cultures might be able to decrease the adverse effects of toxic substances by various mechanisms. The aim of this study was to investigate if treatment with multi-strained probiotic could reduce the toxicity of phthalates and bisphenol A mixture in Wistar rats. Animals were divided into four experimental groups (n = 6): (1) Control (corn oil); (2) P (probiotic (8.78 * 108 CFU/kg/day): Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus planarum LP 6595+ Lactobacillus planarum HEAL9); (3) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA); (4) MIX + P. Animals were euthanized after 28 days of daily oral gavage treatment; blood and organs were collected for further analysis. Probiotic reduced systemic inflammation and had protective effects on liver, kidneys, spleen, lipid status and serum glucose level. It almost completely annulled the changes in biochemical, hematological and hormonal parameters and mitigated changes in relative liver size, food consumption and organ histology. These results suggest considering multi-strained probiotics as a dietary therapeutic strategy against toxicity of the investigated mixture.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Lactobacillus/fisiología , Fenoles/toxicidad , Ácidos Ftálicos/toxicidad , Probióticos/farmacología , Saccharomyces boulardii/fisiología , Animales , Compuestos de Bencidrilo/administración & dosificación , Encéfalo/efectos de los fármacos , Glucosa/metabolismo , Metabolismo de los Lípidos , Masculino , Fenoles/administración & dosificación , Ácidos Ftálicos/administración & dosificación , Ratas , Ratas Wistar , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...