Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Eng ; 12(8): 2263-73, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16968166

RESUMEN

To generate an ''off the shelf'' tissue-engineered heart valve, the cells would need to be of allogeneic origin. Here, we report the possibility of using human bone marrow-derived mesenchymal stem cells (MSCs) as a suitable allogeneic cell source for tissue-engineered heart valves. Proliferative responses of primary and primed CD4+ T cells to allogeneic MSCs were examined. A protein microarray system was used to detect soluble factors from supernatants collected from the T cell assays. MSCs are poor stimulators of primary and primed CD4+ T cell proliferation, despite provision of B7-1 trans-co-stimulation. MSCs not only directly inhibited primary and primed T cell responses to allogeneic peripheral blood mononuclear cells (PBMCs), but 24-h pre-culture of T cells with MSCs suppressed subsequent T cell proliferative responses to allogeneic PBMCs in a contact-dependent manner. Analysis of supernatants revealed a distinctly different cytokine profile after co-culture of T cells with MSCs than with PBMCs or endothelial cells. Pro-inflammatory Th1 cytokines interleukin (IL)-1alpha and beta, interferon (IFN)gamma, and tumor necrosis factor (TNF)alpha were downregulated, whereas, anti-inflammatory Th2 cytokines IL-3, IL-5, IL-10, and IL-13 and the Th2 chemokine I-309, a chemoattractant for regulatory T cells, were upregulated. Further analysis revealed that after co-culture with MSCs, the T cells exhibited a regulatory phenotype (CD4+ CD25(lo) CD69(lo) FoxP3+). MSCs downregulate T cell responses through direct contact and secretion of anti-inflammatory and tolerogenic cytokines, which may involve the recruitment of regulatory T cells. This implies that allogeneic MSCs could be a suitable cell source for tissue engineering a heart valve.


Asunto(s)
Anergia Clonal/inmunología , Válvulas Cardíacas/inmunología , Isoanticuerpos/biosíntesis , Células Madre Mesenquimatosas/fisiología , Células Th2/inmunología , Ingeniería de Tejidos , Células Cultivadas , Humanos , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...