Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692487

RESUMEN

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.

2.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683213

RESUMEN

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Asunto(s)
Bacteriófagos , Biopelículas , Endopeptidasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Endopeptidasas/química , Bacteriófagos/enzimología , Acinetobacter baumannii/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Virales/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química
3.
Gels ; 10(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38247783

RESUMEN

The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such as bactericidal peptidoglycan hydrolases, depolymerases, etc. Enzybiotic-based preparations are being studied for the treatment of various infections and, among others, can be used as topical formulations and dressings with protein-polysaccharide complexes. Here, we investigate the antibiofilm properties of a novel enzybiotic cocktail of phage endolysin LysSi3 and bacteriocin lysostaphin, formulated in the alginate gel matrix and its ability to control the opportunistic skin-colonizing bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as mixed-species biofilms. Our results propose that the application of SiL-gel affects different components of biofilm extracellular polymeric substances, disrupts the matrix, and eliminates the bacteria embedded in it. This composition is highly effective against biofilms composed of Gram-negative and Gram-positive species and does not possess significant cytotoxic effects. Our data form the basis for the development of antibacterial skin care products with a gentle but effective mode of action.

4.
Front Microbiol ; 12: 748718, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721353

RESUMEN

Endolysin-based therapeutics are promising antibacterial agents and can successfully supplement the existing antibacterial drugs array. It is specifically important in the case of Gram-negative pathogens, e.g., ESKAPE group bacteria, which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and are highly inclined to gain multiple antibiotic resistance. Despite numerous works devoted to the screening of new lytic enzymes and investigations of their biochemical properties, there are significant breaches in some aspects of their operating characteristics, including safety issues of endolysin use. Here, we provide a comprehensive study of the antimicrobial efficacy aspects of four Gram-negative bacteria-targeting endolysins LysAm24, LysAp22, LysECD7, and LysSi3, their in vitro and in vivo activity, and their biological safety. These endolysins possess a wide spectrum of action, are active against planktonic bacteria and bacterial biofilms, and are effective in wound and burn skin infection animal models. In terms of safety, these enzymes do not contribute to the development of short-term resistance, are not cytotoxic, and do not significantly affect the normal intestinal microflora in vivo. Our results provide a confident base for the development of effective and safe candidate dosage forms for the treatment of local and systemic infections caused by Gram-negative bacterial species.

5.
Antibiotics (Basel) ; 10(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34680839

RESUMEN

Abscess formation is a common complication of severe life-threatening infections caused by obligate anaerobes. Fusobacterium necrophorum is among the frequently detected anaerobic pathogens from clinical specimens associated with liver abscesses, skin and soft tissue infections, or oral abscesses. The antimicrobial therapy for this kind of infection needs to be optimized. Here, we examined the possibility of treating F. necrophorum-induced abscess wound infections with candidate therapeutics based on three endolysins with activity against a broad spectrum of aerobe Gram-negative pathogens. Antibacterial gel containing three Gram-negative bacteria-targeting endolysins, LysAm24, LysAp22, and LysECD7, was formulated for topical use. Abscess formation was induced in rabbits with F. necrophorum and caused systemic infection. The survival and lifespan of the animals, general parameters, and biochemical and hematological blood tests were analyzed to assess the effectiveness of the gel treatment for the wound infection. The administration of the investigated gel twice per day for 5 days resulted in less acute inflammation, with decreased leukocytes and segmented neutrophils in the blood, retardation of infection progression, and an almost two-fold increase in the lifespan of the animals compared to the placebo group. The results indicate that endolysin-based therapy is an effective approach to treat anaerobic bacterial infections. The use of endolysins as independent pharmaceuticals, or their combination with antibiotics, could significantly reduce the development of complications in infectious diseases caused by sensitive bacterial species.

6.
Viruses ; 12(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429199

RESUMEN

Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed. In this paper, we test the efficacy of a broad-range recombinant endolysin of the coliphage LysECD7 against forming and mature biofilms. We used a strong biofilm producer-Klebsiella pneumoniae Ts 141-14 clinical isolate. In vitro investigation of the antibacterial activity was performed using the standard biofilm assay in microtiter plates. We optimized the implantable diffusion chamber approach in order to reach strong biofilm formation in vivo avoiding severe consequences of the pathogen for the animals and to obtain a well-reproducible model of implant-associated infection. Endolysin LysECD7 significantly reduced the biofilm formation and was capable of degrading the preformed biofilm in vitro. The animal trials on the preformed biofilms confirmed these results. Overall, our results show that LysECD7 is a promising substance against clinically relevant biofilms.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Endopeptidasas/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Colifagos/enzimología , Colifagos/genética , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Endopeptidasas/administración & dosificación , Endopeptidasas/genética , Endopeptidasas/aislamiento & purificación , Femenino , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/prevención & control , Klebsiella pneumoniae/fisiología , Pruebas de Sensibilidad Microbiana , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/prevención & control , Ratas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
7.
Biomolecules ; 10(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178329

RESUMEN

The use of recombinant endolysins is a promising approach for antimicrobial therapy capable of counteracting the spread of antibiotic-resistant strains. To obtain the necessary biotechnological product, diverse peptide tags are often fused to the endolysin sequence to simplify enzyme purification, improve its ability to permeabilize the bacterial outer membrane, etc. We compared the effects of two different types of protein modifications on endolysin LysECD7 bactericidal activity in vitro and demonstrated that it is significantly modulated by specific permeabilizing antimicrobial peptides, as well as by widely used histidine tags. Thus, the tags selected for the study of endolysins and during the development of biotechnological preparations should be used with the appropriate precautions to minimize false conclusions about endolysin properties. Further, modifications of LysECD7 allowed us to obtain a lytic enzyme that was largely devoid of the disadvantages of the native protein and was active over the spectra of conditions, with high in vitro bactericidal activity not only against Gram-negative, but also against Gram-positive, bacteria. This opens up the possibility of developing effective antimicrobials based on N-terminus sheep myeloid peptide of 29 amino acids (SMAP)-modified LysECD7 that can be highly active not only during topical treatment but also for systemic applications in the bloodstream and tissues.


Asunto(s)
Antibacterianos , Endopeptidasas/química , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Proteínas Citotóxicas Formadoras de Poros , Animales , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Ovinos
8.
Viruses ; 11(3)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901901

RESUMEN

The extremely rapid spread of multiple-antibiotic resistance among Gram-negative pathogens threatens to move humankind into the so-called "post-antibiotic era" in which the most efficient and safe antibiotics will not work. Bacteriophage lysins represent promising alternatives to antibiotics, as they are capable of digesting bacterial cell wall peptidoglycans to promote their osmotic lysis. However, relatively little is known regarding the spectrum of lysin bactericidal activity against Gram-negative bacteria. In this study, we present the results of in vitro activity assays of three putative and newly cloned Myoviridae bacteriophage endolysins (LysAm24, LysECD7, and LysSi3). The chosen proteins represent lysins with diverse domain organization (single-domain vs. two-domain) and different predicted mechanisms of action (lysozyme vs. peptidase). The enzymes were purified, and their properties were characterized. The enzymes were tested against a panel of Gram-negative clinical bacterial isolates comprising all Gram-negative representatives of the ESKAPE group. Despite exhibiting different structural organizations, all of the assayed lysins were shown to be capable of lysing Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Salmonella typhi strains. Less than 50 µg/mL was enough to eradicate growing cells over more than five orders of magnitude. Thus, LysAm24, LysECD7, and LysSi3 represent promising therapeutic agents for drug development.


Asunto(s)
Antibacterianos/farmacología , Endopeptidasas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Myoviridae/química , Acinetobacter baumannii/efectos de los fármacos , Endopeptidasas/química , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...